Metamath Proof Explorer


Theorem pcoval

Description: The concatenation of two paths. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses pcoval.2 φ F II Cn J
pcoval.3 φ G II Cn J
Assertion pcoval φ F * 𝑝 J G = x 0 1 if x 1 2 F 2 x G 2 x 1

Proof

Step Hyp Ref Expression
1 pcoval.2 φ F II Cn J
2 pcoval.3 φ G II Cn J
3 fveq1 f = F f 2 x = F 2 x
4 3 adantr f = F g = G f 2 x = F 2 x
5 fveq1 g = G g 2 x 1 = G 2 x 1
6 5 adantl f = F g = G g 2 x 1 = G 2 x 1
7 4 6 ifeq12d f = F g = G if x 1 2 f 2 x g 2 x 1 = if x 1 2 F 2 x G 2 x 1
8 7 mpteq2dv f = F g = G x 0 1 if x 1 2 f 2 x g 2 x 1 = x 0 1 if x 1 2 F 2 x G 2 x 1
9 pcofval * 𝑝 J = f II Cn J , g II Cn J x 0 1 if x 1 2 f 2 x g 2 x 1
10 ovex 0 1 V
11 10 mptex x 0 1 if x 1 2 F 2 x G 2 x 1 V
12 8 9 11 ovmpoa F II Cn J G II Cn J F * 𝑝 J G = x 0 1 if x 1 2 F 2 x G 2 x 1
13 1 2 12 syl2anc φ F * 𝑝 J G = x 0 1 if x 1 2 F 2 x G 2 x 1