Metamath Proof Explorer


Theorem pcoval

Description: The concatenation of two paths. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses pcoval.2 φFIICnJ
pcoval.3 φGIICnJ
Assertion pcoval φF*𝑝JG=x01ifx12F2xG2x1

Proof

Step Hyp Ref Expression
1 pcoval.2 φFIICnJ
2 pcoval.3 φGIICnJ
3 fveq1 f=Ff2x=F2x
4 3 adantr f=Fg=Gf2x=F2x
5 fveq1 g=Gg2x1=G2x1
6 5 adantl f=Fg=Gg2x1=G2x1
7 4 6 ifeq12d f=Fg=Gifx12f2xg2x1=ifx12F2xG2x1
8 7 mpteq2dv f=Fg=Gx01ifx12f2xg2x1=x01ifx12F2xG2x1
9 pcofval *𝑝J=fIICnJ,gIICnJx01ifx12f2xg2x1
10 ovex 01V
11 10 mptex x01ifx12F2xG2x1V
12 8 9 11 ovmpoa FIICnJGIICnJF*𝑝JG=x01ifx12F2xG2x1
13 1 2 12 syl2anc φF*𝑝JG=x01ifx12F2xG2x1