Metamath Proof Explorer


Theorem pcprod

Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Hypothesis pcprod.1 F=nifnnnpCntN1
Assertion pcprod Nseq1×FN=N

Proof

Step Hyp Ref Expression
1 pcprod.1 F=nifnnnpCntN1
2 pccl nNnpCntN0
3 2 ancoms NnnpCntN0
4 3 ralrimiva NnnpCntN0
5 4 adantl pNnnpCntN0
6 simpr pNN
7 simpl pNp
8 oveq1 n=pnpCntN=ppCntN
9 1 5 6 7 8 pcmpt pNppCntseq1×FN=ifpNppCntN0
10 iftrue pNifpNppCntN0=ppCntN
11 10 adantl pNpNifpNppCntN0=ppCntN
12 iffalse ¬pNifpNppCntN0=0
13 12 adantl pN¬pNifpNppCntN0=0
14 prmz pp
15 dvdsle pNpNpN
16 14 15 sylan pNpNpN
17 16 con3dimp pN¬pN¬pN
18 pceq0 pNppCntN=0¬pN
19 18 adantr pN¬pNppCntN=0¬pN
20 17 19 mpbird pN¬pNppCntN=0
21 13 20 eqtr4d pN¬pNifpNppCntN0=ppCntN
22 11 21 pm2.61dan pNifpNppCntN0=ppCntN
23 9 22 eqtrd pNppCntseq1×FN=ppCntN
24 23 ancoms NpppCntseq1×FN=ppCntN
25 24 ralrimiva NpppCntseq1×FN=ppCntN
26 1 4 pcmptcl NF:seq1×F:
27 26 simprd Nseq1×F:
28 ffvelcdm seq1×F:Nseq1×FN
29 27 28 mpancom Nseq1×FN
30 29 nnnn0d Nseq1×FN0
31 nnnn0 NN0
32 pc11 seq1×FN0N0seq1×FN=NpppCntseq1×FN=ppCntN
33 30 31 32 syl2anc Nseq1×FN=NpppCntseq1×FN=ppCntN
34 25 33 mpbird Nseq1×FN=N