| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2l |
|
| 2 |
|
elq |
|
| 3 |
1 2
|
sylib |
|
| 4 |
|
simp3l |
|
| 5 |
|
elq |
|
| 6 |
4 5
|
sylib |
|
| 7 |
|
reeanv |
|
| 8 |
|
reeanv |
|
| 9 |
|
simp2r |
|
| 10 |
|
simp3r |
|
| 11 |
9 10
|
jca |
|
| 12 |
11
|
ad2antrr |
|
| 13 |
|
simp1 |
|
| 14 |
|
simprl |
|
| 15 |
14
|
nncnd |
|
| 16 |
14
|
nnne0d |
|
| 17 |
15 16
|
div0d |
|
| 18 |
|
oveq1 |
|
| 19 |
18
|
eqeq1d |
|
| 20 |
17 19
|
syl5ibrcom |
|
| 21 |
20
|
necon3d |
|
| 22 |
|
simprr |
|
| 23 |
22
|
nncnd |
|
| 24 |
22
|
nnne0d |
|
| 25 |
23 24
|
div0d |
|
| 26 |
|
oveq1 |
|
| 27 |
26
|
eqeq1d |
|
| 28 |
25 27
|
syl5ibrcom |
|
| 29 |
28
|
necon3d |
|
| 30 |
|
simpll |
|
| 31 |
|
simplrl |
|
| 32 |
|
simplrr |
|
| 33 |
31 32
|
zmulcld |
|
| 34 |
31
|
zcnd |
|
| 35 |
32
|
zcnd |
|
| 36 |
|
simprrl |
|
| 37 |
|
simprrr |
|
| 38 |
34 35 36 37
|
mulne0d |
|
| 39 |
14
|
adantrr |
|
| 40 |
22
|
adantrr |
|
| 41 |
39 40
|
nnmulcld |
|
| 42 |
|
pcdiv |
|
| 43 |
30 33 38 41 42
|
syl121anc |
|
| 44 |
|
pcmul |
|
| 45 |
30 31 36 32 37 44
|
syl122anc |
|
| 46 |
39
|
nnzd |
|
| 47 |
16
|
adantrr |
|
| 48 |
40
|
nnzd |
|
| 49 |
24
|
adantrr |
|
| 50 |
|
pcmul |
|
| 51 |
30 46 47 48 49 50
|
syl122anc |
|
| 52 |
45 51
|
oveq12d |
|
| 53 |
|
pczcl |
|
| 54 |
30 31 36 53
|
syl12anc |
|
| 55 |
54
|
nn0cnd |
|
| 56 |
|
pczcl |
|
| 57 |
30 32 37 56
|
syl12anc |
|
| 58 |
57
|
nn0cnd |
|
| 59 |
30 39
|
pccld |
|
| 60 |
59
|
nn0cnd |
|
| 61 |
30 40
|
pccld |
|
| 62 |
61
|
nn0cnd |
|
| 63 |
55 58 60 62
|
addsub4d |
|
| 64 |
43 52 63
|
3eqtrd |
|
| 65 |
15
|
adantrr |
|
| 66 |
23
|
adantrr |
|
| 67 |
34 65 35 66 47 49
|
divmuldivd |
|
| 68 |
67
|
oveq2d |
|
| 69 |
|
pcdiv |
|
| 70 |
30 31 36 39 69
|
syl121anc |
|
| 71 |
|
pcdiv |
|
| 72 |
30 32 37 40 71
|
syl121anc |
|
| 73 |
70 72
|
oveq12d |
|
| 74 |
64 68 73
|
3eqtr4d |
|
| 75 |
74
|
expr |
|
| 76 |
21 29 75
|
syl2and |
|
| 77 |
|
neeq1 |
|
| 78 |
|
neeq1 |
|
| 79 |
77 78
|
bi2anan9 |
|
| 80 |
|
oveq12 |
|
| 81 |
80
|
oveq2d |
|
| 82 |
|
oveq2 |
|
| 83 |
|
oveq2 |
|
| 84 |
82 83
|
oveqan12d |
|
| 85 |
81 84
|
eqeq12d |
|
| 86 |
79 85
|
imbi12d |
|
| 87 |
76 86
|
syl5ibrcom |
|
| 88 |
13 87
|
sylanl1 |
|
| 89 |
12 88
|
mpid |
|
| 90 |
89
|
rexlimdvva |
|
| 91 |
8 90
|
biimtrrid |
|
| 92 |
91
|
rexlimdvva |
|
| 93 |
7 92
|
biimtrrid |
|
| 94 |
3 6 93
|
mp2and |
|