Metamath Proof Explorer


Theorem pcval

Description: The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by Mario Carneiro, 3-Oct-2014)

Ref Expression
Hypotheses pcval.1 S=supn0|Pnx<
pcval.2 T=supn0|Pny<
Assertion pcval PNN0PpCntN=ιz|xyN=xyz=ST

Proof

Step Hyp Ref Expression
1 pcval.1 S=supn0|Pnx<
2 pcval.2 T=supn0|Pny<
3 simpr p=Pr=Nr=N
4 3 eqeq1d p=Pr=Nr=0N=0
5 eqeq1 r=Nr=xyN=xy
6 oveq1 p=Ppn=Pn
7 6 breq1d p=PpnxPnx
8 7 rabbidv p=Pn0|pnx=n0|Pnx
9 8 supeq1d p=Psupn0|pnx<=supn0|Pnx<
10 9 1 eqtr4di p=Psupn0|pnx<=S
11 6 breq1d p=PpnyPny
12 11 rabbidv p=Pn0|pny=n0|Pny
13 12 supeq1d p=Psupn0|pny<=supn0|Pny<
14 13 2 eqtr4di p=Psupn0|pny<=T
15 10 14 oveq12d p=Psupn0|pnx<supn0|pny<=ST
16 15 eqeq2d p=Pz=supn0|pnx<supn0|pny<z=ST
17 5 16 bi2anan9r p=Pr=Nr=xyz=supn0|pnx<supn0|pny<N=xyz=ST
18 17 2rexbidv p=Pr=Nxyr=xyz=supn0|pnx<supn0|pny<xyN=xyz=ST
19 18 iotabidv p=Pr=Nιz|xyr=xyz=supn0|pnx<supn0|pny<=ιz|xyN=xyz=ST
20 4 19 ifbieq2d p=Pr=Nifr=0+∞ιz|xyr=xyz=supn0|pnx<supn0|pny<=ifN=0+∞ιz|xyN=xyz=ST
21 df-pc pCnt=p,rifr=0+∞ιz|xyr=xyz=supn0|pnx<supn0|pny<
22 pnfex +∞V
23 iotaex ιz|xyN=xyz=STV
24 22 23 ifex ifN=0+∞ιz|xyN=xyz=STV
25 20 21 24 ovmpoa PNPpCntN=ifN=0+∞ιz|xyN=xyz=ST
26 ifnefalse N0ifN=0+∞ιz|xyN=xyz=ST=ιz|xyN=xyz=ST
27 25 26 sylan9eq PNN0PpCntN=ιz|xyN=xyz=ST
28 27 anasss PNN0PpCntN=ιz|xyN=xyz=ST