| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpell1234qr |  | 
						
							| 2 |  | simprl |  | 
						
							| 3 |  | ax-1ne0 |  | 
						
							| 4 |  | eldifi |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 | 5 | nncnd |  | 
						
							| 7 | 6 | ad3antrrr |  | 
						
							| 8 | 7 | sqrtcld |  | 
						
							| 9 |  | zcn |  | 
						
							| 10 | 9 | ad2antll |  | 
						
							| 11 | 10 | ad2antrr |  | 
						
							| 12 | 8 11 | sqmuld |  | 
						
							| 13 | 7 | sqsqrtd |  | 
						
							| 14 | 13 | oveq1d |  | 
						
							| 15 | 12 14 | eqtr2d |  | 
						
							| 16 | 15 | oveq2d |  | 
						
							| 17 |  | zcn |  | 
						
							| 18 | 17 | ad2antrl |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 | 8 11 | mulcld |  | 
						
							| 21 |  | subsq |  | 
						
							| 22 | 19 20 21 | syl2anc |  | 
						
							| 23 | 16 22 | eqtrd |  | 
						
							| 24 |  | simplr |  | 
						
							| 25 |  | simpr |  | 
						
							| 26 | 25 | oveq1d |  | 
						
							| 27 | 19 20 | subcld |  | 
						
							| 28 | 27 | mul02d |  | 
						
							| 29 | 26 28 | eqtrd |  | 
						
							| 30 | 23 24 29 | 3eqtr3d |  | 
						
							| 31 | 30 | ex |  | 
						
							| 32 | 31 | necon3d |  | 
						
							| 33 | 3 32 | mpi |  | 
						
							| 34 | 33 | adantrl |  | 
						
							| 35 | 2 34 | eqnetrd |  | 
						
							| 36 | 35 | ex |  | 
						
							| 37 | 36 | rexlimdvva |  | 
						
							| 38 | 37 | expimpd |  | 
						
							| 39 | 1 38 | sylbid |  | 
						
							| 40 | 39 | imp |  |