Metamath Proof Explorer


Theorem pgnbgreunbgrlem2

Description: Lemma 2 for pgnbgreunbgr . Impossible cases. (Contributed by AV, 18-Nov-2025)

Ref Expression
Hypotheses pgnbgreunbgr.g No typesetting found for |- G = ( 5 gPetersenGr 2 ) with typecode |-
pgnbgreunbgr.v V = Vtx G
pgnbgreunbgr.e E = Edg G
pgnbgreunbgr.n N = G NeighbVtx X
Assertion pgnbgreunbgrlem2 L = 1 2 nd X + 2 mod 5 L = 0 2 nd X L = 1 2 nd X 2 mod 5 K = 1 2 nd X + 2 mod 5 K = 0 2 nd X K = 1 2 nd X 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b

Proof

Step Hyp Ref Expression
1 pgnbgreunbgr.g Could not format G = ( 5 gPetersenGr 2 ) : No typesetting found for |- G = ( 5 gPetersenGr 2 ) with typecode |-
2 pgnbgreunbgr.v V = Vtx G
3 pgnbgreunbgr.e E = Edg G
4 pgnbgreunbgr.n N = G NeighbVtx X
5 eqtr3 L = 1 2 nd X + 2 mod 5 K = 1 2 nd X + 2 mod 5 L = K
6 eqneqall K = L K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
7 6 impd K = L K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
8 7 eqcoms L = K K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
9 5 8 syl L = 1 2 nd X + 2 mod 5 K = 1 2 nd X + 2 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
10 9 a1d L = 1 2 nd X + 2 mod 5 K = 1 2 nd X + 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
11 10 ex L = 1 2 nd X + 2 mod 5 K = 1 2 nd X + 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
12 1ex 1 V
13 vex y V
14 12 13 op2ndd X = 1 y 2 nd X = y
15 oveq1 2 nd X = y 2 nd X + 2 = y + 2
16 15 oveq1d 2 nd X = y 2 nd X + 2 mod 5 = y + 2 mod 5
17 16 opeq2d 2 nd X = y 1 2 nd X + 2 mod 5 = 1 y + 2 mod 5
18 17 eqeq2d 2 nd X = y L = 1 2 nd X + 2 mod 5 L = 1 y + 2 mod 5
19 opeq2 2 nd X = y 0 2 nd X = 0 y
20 19 eqeq2d 2 nd X = y K = 0 2 nd X K = 0 y
21 18 20 anbi12d 2 nd X = y L = 1 2 nd X + 2 mod 5 K = 0 2 nd X L = 1 y + 2 mod 5 K = 0 y
22 14 21 syl X = 1 y L = 1 2 nd X + 2 mod 5 K = 0 2 nd X L = 1 y + 2 mod 5 K = 0 y
23 1 2 3 4 pgnbgreunbgrlem2lem1 L = 1 y + 2 mod 5 K = 0 y b 0 ..^ 5 y 0 ..^ 5 K 0 b E ¬ 0 b L E
24 23 pm2.21d L = 1 y + 2 mod 5 K = 0 y b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
25 24 expimpd L = 1 y + 2 mod 5 K = 0 y b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
26 25 ex L = 1 y + 2 mod 5 K = 0 y b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
27 26 adantld L = 1 y + 2 mod 5 K = 0 y K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
28 22 27 biimtrdi X = 1 y L = 1 2 nd X + 2 mod 5 K = 0 2 nd X K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
29 28 adantr X = 1 y X V L = 1 2 nd X + 2 mod 5 K = 0 2 nd X K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
30 29 expdcom L = 1 2 nd X + 2 mod 5 K = 0 2 nd X X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
31 oveq1 2 nd X = y 2 nd X 2 = y 2
32 31 oveq1d 2 nd X = y 2 nd X 2 mod 5 = y 2 mod 5
33 32 opeq2d 2 nd X = y 1 2 nd X 2 mod 5 = 1 y 2 mod 5
34 33 eqeq2d 2 nd X = y K = 1 2 nd X 2 mod 5 K = 1 y 2 mod 5
35 18 34 anbi12d 2 nd X = y L = 1 2 nd X + 2 mod 5 K = 1 2 nd X 2 mod 5 L = 1 y + 2 mod 5 K = 1 y 2 mod 5
36 14 35 syl X = 1 y L = 1 2 nd X + 2 mod 5 K = 1 2 nd X 2 mod 5 L = 1 y + 2 mod 5 K = 1 y 2 mod 5
37 1 2 3 4 pgnbgreunbgrlem2lem3 L = 1 y + 2 mod 5 K = 1 y 2 mod 5 b 0 ..^ 5 y 0 ..^ 5 K 0 b E ¬ 0 b L E
38 37 pm2.21d L = 1 y + 2 mod 5 K = 1 y 2 mod 5 b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
39 38 expimpd L = 1 y + 2 mod 5 K = 1 y 2 mod 5 b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
40 39 ex L = 1 y + 2 mod 5 K = 1 y 2 mod 5 b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
41 40 adantld L = 1 y + 2 mod 5 K = 1 y 2 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
42 36 41 biimtrdi X = 1 y L = 1 2 nd X + 2 mod 5 K = 1 2 nd X 2 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
43 42 adantr X = 1 y X V L = 1 2 nd X + 2 mod 5 K = 1 2 nd X 2 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
44 43 expdcom L = 1 2 nd X + 2 mod 5 K = 1 2 nd X 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
45 11 30 44 3jaod L = 1 2 nd X + 2 mod 5 K = 1 2 nd X + 2 mod 5 K = 0 2 nd X K = 1 2 nd X 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
46 14 adantr X = 1 y X V 2 nd X = y
47 19 eqeq2d 2 nd X = y L = 0 2 nd X L = 0 y
48 17 eqeq2d 2 nd X = y K = 1 2 nd X + 2 mod 5 K = 1 y + 2 mod 5
49 47 48 anbi12d 2 nd X = y L = 0 2 nd X K = 1 2 nd X + 2 mod 5 L = 0 y K = 1 y + 2 mod 5
50 46 49 syl X = 1 y X V L = 0 2 nd X K = 1 2 nd X + 2 mod 5 L = 0 y K = 1 y + 2 mod 5
51 prcom 0 b L = L 0 b
52 51 eleq1i 0 b L E L 0 b E
53 1 2 3 4 pgnbgreunbgrlem2lem1 K = 1 y + 2 mod 5 L = 0 y b 0 ..^ 5 y 0 ..^ 5 L 0 b E ¬ 0 b K E
54 prcom K 0 b = 0 b K
55 54 eleq1i K 0 b E 0 b K E
56 pm2.21 ¬ 0 b K E 0 b K E X = 0 b
57 55 56 biimtrid ¬ 0 b K E K 0 b E X = 0 b
58 53 57 syl K = 1 y + 2 mod 5 L = 0 y b 0 ..^ 5 y 0 ..^ 5 L 0 b E K 0 b E X = 0 b
59 58 ex K = 1 y + 2 mod 5 L = 0 y b 0 ..^ 5 y 0 ..^ 5 L 0 b E K 0 b E X = 0 b
60 52 59 biimtrid K = 1 y + 2 mod 5 L = 0 y b 0 ..^ 5 y 0 ..^ 5 0 b L E K 0 b E X = 0 b
61 60 impcomd K = 1 y + 2 mod 5 L = 0 y b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
62 61 ex K = 1 y + 2 mod 5 L = 0 y b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
63 62 ancoms L = 0 y K = 1 y + 2 mod 5 b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
64 63 adantld L = 0 y K = 1 y + 2 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
65 50 64 biimtrdi X = 1 y X V L = 0 2 nd X K = 1 2 nd X + 2 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
66 65 expdcom L = 0 2 nd X K = 1 2 nd X + 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
67 eqtr3 K = 0 2 nd X L = 0 2 nd X K = L
68 67 ancoms L = 0 2 nd X K = 0 2 nd X K = L
69 68 6 syl L = 0 2 nd X K = 0 2 nd X K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
70 69 impd L = 0 2 nd X K = 0 2 nd X K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
71 70 a1d L = 0 2 nd X K = 0 2 nd X X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
72 71 ex L = 0 2 nd X K = 0 2 nd X X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
73 47 34 anbi12d 2 nd X = y L = 0 2 nd X K = 1 2 nd X 2 mod 5 L = 0 y K = 1 y 2 mod 5
74 46 73 syl X = 1 y X V L = 0 2 nd X K = 1 2 nd X 2 mod 5 L = 0 y K = 1 y 2 mod 5
75 1 2 3 4 pgnbgreunbgrlem2lem2 K = 1 y 2 mod 5 L = 0 y b 0 ..^ 5 y 0 ..^ 5 L 0 b E ¬ 0 b K E
76 75 57 syl K = 1 y 2 mod 5 L = 0 y b 0 ..^ 5 y 0 ..^ 5 L 0 b E K 0 b E X = 0 b
77 76 ex K = 1 y 2 mod 5 L = 0 y b 0 ..^ 5 y 0 ..^ 5 L 0 b E K 0 b E X = 0 b
78 52 77 biimtrid K = 1 y 2 mod 5 L = 0 y b 0 ..^ 5 y 0 ..^ 5 0 b L E K 0 b E X = 0 b
79 78 impcomd K = 1 y 2 mod 5 L = 0 y b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
80 79 ex K = 1 y 2 mod 5 L = 0 y b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
81 80 ancoms L = 0 y K = 1 y 2 mod 5 b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
82 81 adantld L = 0 y K = 1 y 2 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
83 74 82 biimtrdi X = 1 y X V L = 0 2 nd X K = 1 2 nd X 2 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
84 83 expdcom L = 0 2 nd X K = 1 2 nd X 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
85 66 72 84 3jaod L = 0 2 nd X K = 1 2 nd X + 2 mod 5 K = 0 2 nd X K = 1 2 nd X 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
86 33 eqeq2d 2 nd X = y L = 1 2 nd X 2 mod 5 L = 1 y 2 mod 5
87 86 48 anbi12d 2 nd X = y L = 1 2 nd X 2 mod 5 K = 1 2 nd X + 2 mod 5 L = 1 y 2 mod 5 K = 1 y + 2 mod 5
88 46 87 syl X = 1 y X V L = 1 2 nd X 2 mod 5 K = 1 2 nd X + 2 mod 5 L = 1 y 2 mod 5 K = 1 y + 2 mod 5
89 1 2 3 4 pgnbgreunbgrlem2lem3 K = 1 y + 2 mod 5 L = 1 y 2 mod 5 b 0 ..^ 5 y 0 ..^ 5 L 0 b E ¬ 0 b K E
90 89 57 syl K = 1 y + 2 mod 5 L = 1 y 2 mod 5 b 0 ..^ 5 y 0 ..^ 5 L 0 b E K 0 b E X = 0 b
91 90 ex K = 1 y + 2 mod 5 L = 1 y 2 mod 5 b 0 ..^ 5 y 0 ..^ 5 L 0 b E K 0 b E X = 0 b
92 52 91 biimtrid K = 1 y + 2 mod 5 L = 1 y 2 mod 5 b 0 ..^ 5 y 0 ..^ 5 0 b L E K 0 b E X = 0 b
93 92 impcomd K = 1 y + 2 mod 5 L = 1 y 2 mod 5 b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
94 93 ex K = 1 y + 2 mod 5 L = 1 y 2 mod 5 b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
95 94 ancoms L = 1 y 2 mod 5 K = 1 y + 2 mod 5 b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
96 95 adantld L = 1 y 2 mod 5 K = 1 y + 2 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
97 88 96 biimtrdi X = 1 y X V L = 1 2 nd X 2 mod 5 K = 1 2 nd X + 2 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
98 97 expdcom L = 1 2 nd X 2 mod 5 K = 1 2 nd X + 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
99 86 20 anbi12d 2 nd X = y L = 1 2 nd X 2 mod 5 K = 0 2 nd X L = 1 y 2 mod 5 K = 0 y
100 46 99 syl X = 1 y X V L = 1 2 nd X 2 mod 5 K = 0 2 nd X L = 1 y 2 mod 5 K = 0 y
101 1 2 3 4 pgnbgreunbgrlem2lem2 L = 1 y 2 mod 5 K = 0 y b 0 ..^ 5 y 0 ..^ 5 K 0 b E ¬ 0 b L E
102 101 pm2.21d L = 1 y 2 mod 5 K = 0 y b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
103 102 expimpd L = 1 y 2 mod 5 K = 0 y b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
104 103 ex L = 1 y 2 mod 5 K = 0 y b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
105 104 adantld L = 1 y 2 mod 5 K = 0 y K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
106 100 105 biimtrdi X = 1 y X V L = 1 2 nd X 2 mod 5 K = 0 2 nd X K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
107 106 expdcom L = 1 2 nd X 2 mod 5 K = 0 2 nd X X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
108 eqtr3 L = 1 2 nd X 2 mod 5 K = 1 2 nd X 2 mod 5 L = K
109 108 eqcomd L = 1 2 nd X 2 mod 5 K = 1 2 nd X 2 mod 5 K = L
110 109 7 syl L = 1 2 nd X 2 mod 5 K = 1 2 nd X 2 mod 5 K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
111 110 a1d L = 1 2 nd X 2 mod 5 K = 1 2 nd X 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
112 111 ex L = 1 2 nd X 2 mod 5 K = 1 2 nd X 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
113 98 107 112 3jaod L = 1 2 nd X 2 mod 5 K = 1 2 nd X + 2 mod 5 K = 0 2 nd X K = 1 2 nd X 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b
114 45 85 113 3jaoi L = 1 2 nd X + 2 mod 5 L = 0 2 nd X L = 1 2 nd X 2 mod 5 K = 1 2 nd X + 2 mod 5 K = 0 2 nd X K = 1 2 nd X 2 mod 5 X = 1 y X V K L b 0 ..^ 5 y 0 ..^ 5 K 0 b E 0 b L E X = 0 b