Description: Lemma for phibnd . (Contributed by Mario Carneiro, 23-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | phibndlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn | |
|
2 | fzm1 | |
|
3 | nnuz | |
|
4 | 2 3 | eleq2s | |
5 | 4 | biimpa | |
6 | 5 | ord | |
7 | 1 6 | sylan | |
8 | eluzelz | |
|
9 | gcdid | |
|
10 | 8 9 | syl | |
11 | nnre | |
|
12 | nnnn0 | |
|
13 | 12 | nn0ge0d | |
14 | 11 13 | absidd | |
15 | 1 14 | syl | |
16 | 10 15 | eqtrd | |
17 | 1re | |
|
18 | eluz2gt1 | |
|
19 | ltne | |
|
20 | 17 18 19 | sylancr | |
21 | 16 20 | eqnetrd | |
22 | oveq1 | |
|
23 | 22 | neeq1d | |
24 | 21 23 | syl5ibrcom | |
25 | 24 | adantr | |
26 | 7 25 | syld | |
27 | 26 | necon4bd | |
28 | 27 | ralrimiva | |
29 | rabss | |
|
30 | 28 29 | sylibr | |