| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phplem2OLD.1 |
|
| 2 |
|
phplem2OLD.2 |
|
| 3 |
|
bren |
|
| 4 |
|
f1of1 |
|
| 5 |
4
|
adantl |
|
| 6 |
2
|
sucex |
|
| 7 |
|
sssucid |
|
| 8 |
|
f1imaen2g |
|
| 9 |
7 1 8
|
mpanr12 |
|
| 10 |
5 6 9
|
sylancl |
|
| 11 |
10
|
ensymd |
|
| 12 |
|
nnord |
|
| 13 |
|
orddif |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
imaeq2d |
|
| 16 |
|
f1ofn |
|
| 17 |
1
|
sucid |
|
| 18 |
|
fnsnfv |
|
| 19 |
16 17 18
|
sylancl |
|
| 20 |
19
|
difeq2d |
|
| 21 |
|
imadmrn |
|
| 22 |
21
|
eqcomi |
|
| 23 |
|
f1ofo |
|
| 24 |
|
forn |
|
| 25 |
23 24
|
syl |
|
| 26 |
|
f1odm |
|
| 27 |
26
|
imaeq2d |
|
| 28 |
22 25 27
|
3eqtr3a |
|
| 29 |
28
|
difeq1d |
|
| 30 |
|
dff1o3 |
|
| 31 |
|
imadif |
|
| 32 |
30 31
|
simplbiim |
|
| 33 |
20 29 32
|
3eqtr4rd |
|
| 34 |
15 33
|
sylan9eq |
|
| 35 |
11 34
|
breqtrd |
|
| 36 |
|
fnfvelrn |
|
| 37 |
16 17 36
|
sylancl |
|
| 38 |
24
|
eleq2d |
|
| 39 |
23 38
|
syl |
|
| 40 |
37 39
|
mpbid |
|
| 41 |
|
fvex |
|
| 42 |
2 41
|
phplem3OLD |
|
| 43 |
40 42
|
sylan2 |
|
| 44 |
43
|
ensymd |
|
| 45 |
|
entr |
|
| 46 |
35 44 45
|
syl2an |
|
| 47 |
46
|
anandirs |
|
| 48 |
47
|
ex |
|
| 49 |
48
|
exlimdv |
|
| 50 |
3 49
|
biimtrid |
|