Metamath Proof Explorer


Theorem pimltmnf2f

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -oo , is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimltmnf2f.1 _xF
pimltmnf2f.2 _xA
pimltmnf2f.3 φF:A
Assertion pimltmnf2f φxA|Fx<−∞=

Proof

Step Hyp Ref Expression
1 pimltmnf2f.1 _xF
2 pimltmnf2f.2 _xA
3 pimltmnf2f.3 φF:A
4 nfcv _yA
5 nfv yFx<−∞
6 nfcv _xy
7 1 6 nffv _xFy
8 nfcv _x<
9 nfcv _x−∞
10 7 8 9 nfbr xFy<−∞
11 fveq2 x=yFx=Fy
12 11 breq1d x=yFx<−∞Fy<−∞
13 2 4 5 10 12 cbvrabw xA|Fx<−∞=yA|Fy<−∞
14 3 ffvelcdmda φyAFy
15 14 rexrd φyAFy*
16 15 mnfled φyA−∞Fy
17 mnfxr −∞*
18 17 a1i φyA−∞*
19 18 15 xrlenltd φyA−∞Fy¬Fy<−∞
20 16 19 mpbid φyA¬Fy<−∞
21 20 ralrimiva φyA¬Fy<−∞
22 rabeq0 yA|Fy<−∞=yA¬Fy<−∞
23 21 22 sylibr φyA|Fy<−∞=
24 13 23 eqtrid φxA|Fx<−∞=