| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pj1eu.a |
|
| 2 |
|
pj1eu.s |
|
| 3 |
|
pj1eu.o |
|
| 4 |
|
pj1eu.z |
|
| 5 |
|
pj1eu.2 |
|
| 6 |
|
pj1eu.3 |
|
| 7 |
|
pj1eu.4 |
|
| 8 |
|
pj1eu.5 |
|
| 9 |
|
pj1f.p |
|
| 10 |
5
|
adantr |
|
| 11 |
|
subgrcl |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
eqid |
|
| 14 |
13
|
subgss |
|
| 15 |
6 14
|
syl |
|
| 16 |
15
|
sselda |
|
| 17 |
13 1 3
|
grplid |
|
| 18 |
12 16 17
|
syl2anc |
|
| 19 |
18
|
eqcomd |
|
| 20 |
6
|
adantr |
|
| 21 |
7
|
adantr |
|
| 22 |
8
|
adantr |
|
| 23 |
2
|
lsmub2 |
|
| 24 |
5 6 23
|
syl2anc |
|
| 25 |
24
|
sselda |
|
| 26 |
3
|
subg0cl |
|
| 27 |
10 26
|
syl |
|
| 28 |
|
simpr |
|
| 29 |
1 2 3 4 10 20 21 22 9 25 27 28
|
pj1eq |
|
| 30 |
19 29
|
mpbid |
|
| 31 |
30
|
simpld |
|