Metamath Proof Explorer


Theorem pjfval2

Description: Value of the projection map with implicit domain. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjfval2.o ˙=ocvW
pjfval2.p P=proj1W
pjfval2.k K=projW
Assertion pjfval2 K=xdomKxP˙x

Proof

Step Hyp Ref Expression
1 pjfval2.o ˙=ocvW
2 pjfval2.p P=proj1W
3 pjfval2.k K=projW
4 df-mpt xLSubSpWxP˙x=xy|xLSubSpWy=xP˙x
5 df-xp V×BaseWBaseW=xy|xVyBaseWBaseW
6 4 5 ineq12i xLSubSpWxP˙xV×BaseWBaseW=xy|xLSubSpWy=xP˙xxy|xVyBaseWBaseW
7 eqid BaseW=BaseW
8 eqid LSubSpW=LSubSpW
9 7 8 1 2 3 pjfval K=xLSubSpWxP˙xV×BaseWBaseW
10 7 8 1 2 3 pjdm xdomKxLSubSpWxP˙x:BaseWBaseW
11 eleq1 y=xP˙xyBaseWBaseWxP˙xBaseWBaseW
12 fvex BaseWV
13 12 12 elmap xP˙xBaseWBaseWxP˙x:BaseWBaseW
14 11 13 bitr2di y=xP˙xxP˙x:BaseWBaseWyBaseWBaseW
15 14 anbi2d y=xP˙xxLSubSpWxP˙x:BaseWBaseWxLSubSpWyBaseWBaseW
16 10 15 bitrid y=xP˙xxdomKxLSubSpWyBaseWBaseW
17 16 pm5.32ri xdomKy=xP˙xxLSubSpWyBaseWBaseWy=xP˙x
18 an32 xLSubSpWyBaseWBaseWy=xP˙xxLSubSpWy=xP˙xyBaseWBaseW
19 vex xV
20 19 biantrur yBaseWBaseWxVyBaseWBaseW
21 20 anbi2i xLSubSpWy=xP˙xyBaseWBaseWxLSubSpWy=xP˙xxVyBaseWBaseW
22 17 18 21 3bitri xdomKy=xP˙xxLSubSpWy=xP˙xxVyBaseWBaseW
23 22 opabbii xy|xdomKy=xP˙x=xy|xLSubSpWy=xP˙xxVyBaseWBaseW
24 df-mpt xdomKxP˙x=xy|xdomKy=xP˙x
25 inopab xy|xLSubSpWy=xP˙xxy|xVyBaseWBaseW=xy|xLSubSpWy=xP˙xxVyBaseWBaseW
26 23 24 25 3eqtr4i xdomKxP˙x=xy|xLSubSpWy=xP˙xxy|xVyBaseWBaseW
27 6 9 26 3eqtr4i K=xdomKxP˙x