Metamath Proof Explorer


Theorem pjinvari

Description: A closed subspace H with projection T is invariant under an operator S iff S T = T S T . Theorem 27.1 of Halmos p. 45. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses pjinvar.1 S:
pjinvar.2 HC
pjinvar.3 T=projH
Assertion pjinvari ST:HST=TST

Proof

Step Hyp Ref Expression
1 pjinvar.1 S:
2 pjinvar.2 HC
3 pjinvar.3 T=projH
4 3 fveq1i TSTx=projHSTx
5 ffvelcdm ST:HxSTxH
6 pjid HCSTxHprojHSTx=STx
7 2 5 6 sylancr ST:HxprojHSTx=STx
8 4 7 eqtr2id ST:HxSTx=TSTx
9 fvco3 ST:HxTSTx=TSTx
10 8 9 eqtr4d ST:HxSTx=TSTx
11 10 ralrimiva ST:HxSTx=TSTx
12 2 pjfoi projH:ontoH
13 fof projH:ontoHprojH:H
14 12 13 ax-mp projH:H
15 3 feq1i T:HprojH:H
16 14 15 mpbir T:H
17 2 chssii H
18 fss T:HHT:
19 16 17 18 mp2an T:
20 1 19 hocofni STFn
21 1 19 hocofi ST:
22 19 21 hocofni TSTFn
23 eqfnfv STFnTSTFnST=TSTxSTx=TSTx
24 20 22 23 mp2an ST=TSTxSTx=TSTx
25 11 24 sylibr ST:HST=TST
26 fco T:HST:TST:H
27 16 21 26 mp2an TST:H
28 feq1 ST=TSTST:HTST:H
29 27 28 mpbiri ST=TSTST:H
30 25 29 impbii ST:HST=TST