Metamath Proof Explorer


Theorem pjinvari

Description: A closed subspace H with projection T is invariant under an operator S iff S T = T S T . Theorem 27.1 of Halmos p. 45. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses pjinvar.1 S :
pjinvar.2 H C
pjinvar.3 T = proj H
Assertion pjinvari S T : H S T = T S T

Proof

Step Hyp Ref Expression
1 pjinvar.1 S :
2 pjinvar.2 H C
3 pjinvar.3 T = proj H
4 3 fveq1i T S T x = proj H S T x
5 ffvelrn S T : H x S T x H
6 pjid H C S T x H proj H S T x = S T x
7 2 5 6 sylancr S T : H x proj H S T x = S T x
8 4 7 eqtr2id S T : H x S T x = T S T x
9 fvco3 S T : H x T S T x = T S T x
10 8 9 eqtr4d S T : H x S T x = T S T x
11 10 ralrimiva S T : H x S T x = T S T x
12 2 pjfoi proj H : onto H
13 fof proj H : onto H proj H : H
14 12 13 ax-mp proj H : H
15 3 feq1i T : H proj H : H
16 14 15 mpbir T : H
17 2 chssii H
18 fss T : H H T :
19 16 17 18 mp2an T :
20 1 19 hocofni S T Fn
21 1 19 hocofi S T :
22 19 21 hocofni T S T Fn
23 eqfnfv S T Fn T S T Fn S T = T S T x S T x = T S T x
24 20 22 23 mp2an S T = T S T x S T x = T S T x
25 11 24 sylibr S T : H S T = T S T
26 fco T : H S T : T S T : H
27 16 21 26 mp2an T S T : H
28 feq1 S T = T S T S T : H T S T : H
29 27 28 mpbiri S T = T S T S T : H
30 25 29 impbii S T : H S T = T S T