Description: Associative identity with scalar and ring multiplication for the polynomial ring. (Contributed by AV, 14-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1ass23l.p | |
|
ply1ass23l.t | |
||
ply1ass23l.b | |
||
ply1ass23l.k | |
||
ply1ass23l.n | |
||
Assertion | ply1ass23l | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1ass23l.p | |
|
2 | ply1ass23l.t | |
|
3 | ply1ass23l.b | |
|
4 | ply1ass23l.k | |
|
5 | ply1ass23l.n | |
|
6 | eqid | |
|
7 | 1on | |
|
8 | 7 | a1i | |
9 | simpl | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 1 11 2 | ply1mulr | |
13 | 11 6 12 | mplmulr | |
14 | eqid | |
|
15 | eqid | |
|
16 | 11 6 15 14 | mplbasss | |
17 | 1 3 | ply1bascl2 | |
18 | 16 17 | sselid | |
19 | 18 | 3ad2ant2 | |
20 | 19 | adantl | |
21 | 1 3 | ply1bascl2 | |
22 | 16 21 | sselid | |
23 | 22 | 3ad2ant3 | |
24 | 23 | adantl | |
25 | 1 11 5 | ply1vsca | |
26 | 11 6 25 | mplvsca2 | |
27 | simpr1 | |
|
28 | 6 8 9 10 13 14 20 24 4 26 27 | psrass23l | |