Metamath Proof Explorer


Theorem ply1ass23l

Description: Associative identity with scalar and ring multiplication for the polynomial ring. (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses ply1ass23l.p P=Poly1R
ply1ass23l.t ×˙=P
ply1ass23l.b B=BaseP
ply1ass23l.k K=BaseR
ply1ass23l.n ·˙=P
Assertion ply1ass23l RRingAKXBYBA·˙X×˙Y=A·˙X×˙Y

Proof

Step Hyp Ref Expression
1 ply1ass23l.p P=Poly1R
2 ply1ass23l.t ×˙=P
3 ply1ass23l.b B=BaseP
4 ply1ass23l.k K=BaseR
5 ply1ass23l.n ·˙=P
6 eqid 1𝑜mPwSerR=1𝑜mPwSerR
7 1on 1𝑜On
8 7 a1i RRingAKXBYB1𝑜On
9 simpl RRingAKXBYBRRing
10 eqid f01𝑜|f-1Fin=f01𝑜|f-1Fin
11 eqid 1𝑜mPolyR=1𝑜mPolyR
12 1 11 2 ply1mulr ×˙=1𝑜mPolyR
13 11 6 12 mplmulr ×˙=1𝑜mPwSerR
14 eqid Base1𝑜mPwSerR=Base1𝑜mPwSerR
15 eqid Base1𝑜mPolyR=Base1𝑜mPolyR
16 11 6 15 14 mplbasss Base1𝑜mPolyRBase1𝑜mPwSerR
17 1 3 ply1bascl2 XBXBase1𝑜mPolyR
18 16 17 sselid XBXBase1𝑜mPwSerR
19 18 3ad2ant2 AKXBYBXBase1𝑜mPwSerR
20 19 adantl RRingAKXBYBXBase1𝑜mPwSerR
21 1 3 ply1bascl2 YBYBase1𝑜mPolyR
22 16 21 sselid YBYBase1𝑜mPwSerR
23 22 3ad2ant3 AKXBYBYBase1𝑜mPwSerR
24 23 adantl RRingAKXBYBYBase1𝑜mPwSerR
25 1 11 5 ply1vsca ·˙=1𝑜mPolyR
26 11 6 25 mplvsca2 ·˙=1𝑜mPwSerR
27 simpr1 RRingAKXBYBAK
28 6 8 9 10 13 14 20 24 4 26 27 psrass23l RRingAKXBYBA·˙X×˙Y=A·˙X×˙Y