Metamath Proof Explorer


Theorem ply1lpir

Description: The ring of polynomials over a division ring has the principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypothesis ply1lpir.p P = Poly 1 R
Assertion ply1lpir R DivRing P LPIR

Proof

Step Hyp Ref Expression
1 ply1lpir.p P = Poly 1 R
2 drngring R DivRing R Ring
3 1 ply1ring R Ring P Ring
4 2 3 syl R DivRing P Ring
5 eqid Base P = Base P
6 eqid LIdeal P = LIdeal P
7 5 6 lidlss i LIdeal P i Base P
8 7 adantl R DivRing i LIdeal P i Base P
9 eqid idlGen 1p R = idlGen 1p R
10 1 9 6 ig1pcl R DivRing i LIdeal P idlGen 1p R i i
11 8 10 sseldd R DivRing i LIdeal P idlGen 1p R i Base P
12 eqid RSpan P = RSpan P
13 1 9 6 12 ig1prsp R DivRing i LIdeal P i = RSpan P idlGen 1p R i
14 sneq j = idlGen 1p R i j = idlGen 1p R i
15 14 fveq2d j = idlGen 1p R i RSpan P j = RSpan P idlGen 1p R i
16 15 rspceeqv idlGen 1p R i Base P i = RSpan P idlGen 1p R i j Base P i = RSpan P j
17 11 13 16 syl2anc R DivRing i LIdeal P j Base P i = RSpan P j
18 4 adantr R DivRing i LIdeal P P Ring
19 eqid LPIdeal P = LPIdeal P
20 19 12 5 islpidl P Ring i LPIdeal P j Base P i = RSpan P j
21 18 20 syl R DivRing i LIdeal P i LPIdeal P j Base P i = RSpan P j
22 17 21 mpbird R DivRing i LIdeal P i LPIdeal P
23 22 ex R DivRing i LIdeal P i LPIdeal P
24 23 ssrdv R DivRing LIdeal P LPIdeal P
25 19 6 islpir2 P LPIR P Ring LIdeal P LPIdeal P
26 4 24 25 sylanbrc R DivRing P LPIR