Metamath Proof Explorer


Theorem ply1scleq

Description: Equality of a constant polynomial is the same as equality of the constant term. (Contributed by Thierry Arnoux, 24-Jul-2024)

Ref Expression
Hypotheses ply1scleq.p P=Poly1R
ply1scleq.b B=BaseR
ply1scleq.a A=algScP
ply1scleq.r φRRing
ply1scleq.e φEB
ply1scleq.f φFB
Assertion ply1scleq φAE=AFE=F

Proof

Step Hyp Ref Expression
1 ply1scleq.p P=Poly1R
2 ply1scleq.b B=BaseR
3 ply1scleq.a A=algScP
4 ply1scleq.r φRRing
5 ply1scleq.e φEB
6 ply1scleq.f φFB
7 fveq2 d=0coe1AEd=coe1AE0
8 fveq2 d=0coe1AFd=coe1AF0
9 7 8 eqeq12d d=0coe1AEd=coe1AFdcoe1AE0=coe1AF0
10 eqid BaseP=BaseP
11 1 3 2 10 ply1sclcl RRingEBAEBaseP
12 4 5 11 syl2anc φAEBaseP
13 1 3 2 10 ply1sclcl RRingFBAFBaseP
14 4 6 13 syl2anc φAFBaseP
15 eqid coe1AE=coe1AE
16 eqid coe1AF=coe1AF
17 1 10 15 16 ply1coe1eq RRingAEBasePAFBasePd0coe1AEd=coe1AFdAE=AF
18 4 12 14 17 syl3anc φd0coe1AEd=coe1AFdAE=AF
19 18 biimpar φAE=AFd0coe1AEd=coe1AFd
20 0nn0 00
21 20 a1i φAE=AF00
22 9 19 21 rspcdva φAE=AFcoe1AE0=coe1AF0
23 1 3 2 ply1sclid RRingEBE=coe1AE0
24 4 5 23 syl2anc φE=coe1AE0
25 24 adantr φAE=AFE=coe1AE0
26 1 3 2 ply1sclid RRingFBF=coe1AF0
27 4 6 26 syl2anc φF=coe1AF0
28 27 adantr φAE=AFF=coe1AF0
29 22 25 28 3eqtr4d φAE=AFE=F
30 fveq2 E=FAE=AF
31 30 adantl φE=FAE=AF
32 29 31 impbida φAE=AFE=F