Description: Equality of a constant polynomial is the same as equality of the constant term. (Contributed by Thierry Arnoux, 24-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1scleq.p | |
|
ply1scleq.b | |
||
ply1scleq.a | |
||
ply1scleq.r | |
||
ply1scleq.e | |
||
ply1scleq.f | |
||
Assertion | ply1scleq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1scleq.p | |
|
2 | ply1scleq.b | |
|
3 | ply1scleq.a | |
|
4 | ply1scleq.r | |
|
5 | ply1scleq.e | |
|
6 | ply1scleq.f | |
|
7 | fveq2 | |
|
8 | fveq2 | |
|
9 | 7 8 | eqeq12d | |
10 | eqid | |
|
11 | 1 3 2 10 | ply1sclcl | |
12 | 4 5 11 | syl2anc | |
13 | 1 3 2 10 | ply1sclcl | |
14 | 4 6 13 | syl2anc | |
15 | eqid | |
|
16 | eqid | |
|
17 | 1 10 15 16 | ply1coe1eq | |
18 | 4 12 14 17 | syl3anc | |
19 | 18 | biimpar | |
20 | 0nn0 | |
|
21 | 20 | a1i | |
22 | 9 19 21 | rspcdva | |
23 | 1 3 2 | ply1sclid | |
24 | 4 5 23 | syl2anc | |
25 | 24 | adantr | |
26 | 1 3 2 | ply1sclid | |
27 | 4 6 26 | syl2anc | |
28 | 27 | adantr | |
29 | 22 25 28 | 3eqtr4d | |
30 | fveq2 | |
|
31 | 30 | adantl | |
32 | 29 31 | impbida | |