Metamath Proof Explorer


Theorem ply1scleq

Description: Equality of a constant polynomial is the same as equality of the constant term. (Contributed by Thierry Arnoux, 24-Jul-2024)

Ref Expression
Hypotheses ply1scleq.p P = Poly 1 R
ply1scleq.b B = Base R
ply1scleq.a A = algSc P
ply1scleq.r φ R Ring
ply1scleq.e φ E B
ply1scleq.f φ F B
Assertion ply1scleq φ A E = A F E = F

Proof

Step Hyp Ref Expression
1 ply1scleq.p P = Poly 1 R
2 ply1scleq.b B = Base R
3 ply1scleq.a A = algSc P
4 ply1scleq.r φ R Ring
5 ply1scleq.e φ E B
6 ply1scleq.f φ F B
7 fveq2 d = 0 coe 1 A E d = coe 1 A E 0
8 fveq2 d = 0 coe 1 A F d = coe 1 A F 0
9 7 8 eqeq12d d = 0 coe 1 A E d = coe 1 A F d coe 1 A E 0 = coe 1 A F 0
10 eqid Base P = Base P
11 1 3 2 10 ply1sclcl R Ring E B A E Base P
12 4 5 11 syl2anc φ A E Base P
13 1 3 2 10 ply1sclcl R Ring F B A F Base P
14 4 6 13 syl2anc φ A F Base P
15 eqid coe 1 A E = coe 1 A E
16 eqid coe 1 A F = coe 1 A F
17 1 10 15 16 ply1coe1eq R Ring A E Base P A F Base P d 0 coe 1 A E d = coe 1 A F d A E = A F
18 4 12 14 17 syl3anc φ d 0 coe 1 A E d = coe 1 A F d A E = A F
19 18 biimpar φ A E = A F d 0 coe 1 A E d = coe 1 A F d
20 0nn0 0 0
21 20 a1i φ A E = A F 0 0
22 9 19 21 rspcdva φ A E = A F coe 1 A E 0 = coe 1 A F 0
23 1 3 2 ply1sclid R Ring E B E = coe 1 A E 0
24 4 5 23 syl2anc φ E = coe 1 A E 0
25 24 adantr φ A E = A F E = coe 1 A E 0
26 1 3 2 ply1sclid R Ring F B F = coe 1 A F 0
27 4 6 26 syl2anc φ F = coe 1 A F 0
28 27 adantr φ A E = A F F = coe 1 A F 0
29 22 25 28 3eqtr4d φ A E = A F E = F
30 fveq2 E = F A E = A F
31 30 adantl φ E = F A E = A F
32 29 31 impbida φ A E = A F E = F