Metamath Proof Explorer


Theorem pm2mpfo

Description: The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 12-Oct-2019) (Revised by AV, 6-Dec-2019)

Ref Expression
Hypotheses pm2mpfo.p P=Poly1R
pm2mpfo.c C=NMatP
pm2mpfo.b B=BaseC
pm2mpfo.m ˙=Q
pm2mpfo.e ×˙=mulGrpQ
pm2mpfo.x X=var1A
pm2mpfo.a A=NMatR
pm2mpfo.q Q=Poly1A
pm2mpfo.l L=BaseQ
pm2mpfo.t T=NpMatToMatPolyR
Assertion pm2mpfo NFinRRingT:BontoL

Proof

Step Hyp Ref Expression
1 pm2mpfo.p P=Poly1R
2 pm2mpfo.c C=NMatP
3 pm2mpfo.b B=BaseC
4 pm2mpfo.m ˙=Q
5 pm2mpfo.e ×˙=mulGrpQ
6 pm2mpfo.x X=var1A
7 pm2mpfo.a A=NMatR
8 pm2mpfo.q Q=Poly1A
9 pm2mpfo.l L=BaseQ
10 pm2mpfo.t T=NpMatToMatPolyR
11 1 2 3 4 5 6 7 8 10 9 pm2mpf NFinRRingT:BL
12 eqid P=P
13 eqid mulGrpP=mulGrpP
14 eqid var1R=var1R
15 eqid lLiN,jNPk0icoe1lkjPkmulGrpPvar1R=lLiN,jNPk0icoe1lkjPkmulGrpPvar1R
16 7 8 9 12 13 14 15 1 10 mp2pm2mp NFinRRingpLTlLiN,jNPk0icoe1lkjPkmulGrpPvar1Rp=p
17 16 3expa NFinRRingpLTlLiN,jNPk0icoe1lkjPkmulGrpPvar1Rp=p
18 7 8 9 1 12 13 14 15 2 3 mply1topmatcl NFinRRingpLlLiN,jNPk0icoe1lkjPkmulGrpPvar1RpB
19 18 3expa NFinRRingpLlLiN,jNPk0icoe1lkjPkmulGrpPvar1RpB
20 simpr NFinRRingpLf=lLiN,jNPk0icoe1lkjPkmulGrpPvar1Rpf=lLiN,jNPk0icoe1lkjPkmulGrpPvar1Rp
21 20 fveq2d NFinRRingpLf=lLiN,jNPk0icoe1lkjPkmulGrpPvar1RpTf=TlLiN,jNPk0icoe1lkjPkmulGrpPvar1Rp
22 21 eqeq2d NFinRRingpLf=lLiN,jNPk0icoe1lkjPkmulGrpPvar1Rpp=Tfp=TlLiN,jNPk0icoe1lkjPkmulGrpPvar1Rp
23 19 22 rspcedv NFinRRingpLp=TlLiN,jNPk0icoe1lkjPkmulGrpPvar1RpfBp=Tf
24 23 com12 p=TlLiN,jNPk0icoe1lkjPkmulGrpPvar1RpNFinRRingpLfBp=Tf
25 24 eqcoms TlLiN,jNPk0icoe1lkjPkmulGrpPvar1Rp=pNFinRRingpLfBp=Tf
26 17 25 mpcom NFinRRingpLfBp=Tf
27 26 ralrimiva NFinRRingpLfBp=Tf
28 dffo3 T:BontoLT:BLpLfBp=Tf
29 11 27 28 sylanbrc NFinRRingT:BontoL