Metamath Proof Explorer


Theorem pmapj2N

Description: The projective map of the join of two lattice elements. (Contributed by NM, 14-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapj2.b B=BaseK
pmapj2.j ˙=joinK
pmapj2.m M=pmapK
pmapj2.p +˙=+𝑃K
pmapj2.o ˙=𝑃K
Assertion pmapj2N KHLXBYBMX˙Y=˙˙MX+˙MY

Proof

Step Hyp Ref Expression
1 pmapj2.b B=BaseK
2 pmapj2.j ˙=joinK
3 pmapj2.m M=pmapK
4 pmapj2.p +˙=+𝑃K
5 pmapj2.o ˙=𝑃K
6 simp1 KHLXBYBKHL
7 hllat KHLKLat
8 7 3ad2ant1 KHLXBYBKLat
9 hlop KHLKOP
10 9 3ad2ant1 KHLXBYBKOP
11 simp2 KHLXBYBXB
12 eqid ocK=ocK
13 1 12 opoccl KOPXBocKXB
14 10 11 13 syl2anc KHLXBYBocKXB
15 simp3 KHLXBYBYB
16 1 12 opoccl KOPYBocKYB
17 10 15 16 syl2anc KHLXBYBocKYB
18 eqid meetK=meetK
19 1 18 latmcl KLatocKXBocKYBocKXmeetKocKYB
20 8 14 17 19 syl3anc KHLXBYBocKXmeetKocKYB
21 1 12 3 5 polpmapN KHLocKXmeetKocKYB˙MocKXmeetKocKY=MocKocKXmeetKocKY
22 6 20 21 syl2anc KHLXBYB˙MocKXmeetKocKY=MocKocKXmeetKocKY
23 1 12 3 5 polpmapN KHLXB˙MX=MocKX
24 23 3adant3 KHLXBYB˙MX=MocKX
25 1 12 3 5 polpmapN KHLYB˙MY=MocKY
26 25 3adant2 KHLXBYB˙MY=MocKY
27 24 26 ineq12d KHLXBYB˙MX˙MY=MocKXMocKY
28 eqid AtomsK=AtomsK
29 1 28 3 pmapssat KHLXBMXAtomsK
30 29 3adant3 KHLXBYBMXAtomsK
31 1 28 3 pmapssat KHLYBMYAtomsK
32 31 3adant2 KHLXBYBMYAtomsK
33 28 4 5 poldmj1N KHLMXAtomsKMYAtomsK˙MX+˙MY=˙MX˙MY
34 6 30 32 33 syl3anc KHLXBYB˙MX+˙MY=˙MX˙MY
35 1 18 28 3 pmapmeet KHLocKXBocKYBMocKXmeetKocKY=MocKXMocKY
36 6 14 17 35 syl3anc KHLXBYBMocKXmeetKocKY=MocKXMocKY
37 27 34 36 3eqtr4rd KHLXBYBMocKXmeetKocKY=˙MX+˙MY
38 37 fveq2d KHLXBYB˙MocKXmeetKocKY=˙˙MX+˙MY
39 hlol KHLKOL
40 1 2 18 12 oldmm4 KOLXBYBocKocKXmeetKocKY=X˙Y
41 39 40 syl3an1 KHLXBYBocKocKXmeetKocKY=X˙Y
42 41 fveq2d KHLXBYBMocKocKXmeetKocKY=MX˙Y
43 22 38 42 3eqtr3rd KHLXBYBMX˙Y=˙˙MX+˙MY