| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcollpw1.p |  | 
						
							| 2 |  | pmatcollpw1.c |  | 
						
							| 3 |  | pmatcollpw1.b |  | 
						
							| 4 |  | pmatcollpw1.m |  | 
						
							| 5 |  | pmatcollpw1.e |  | 
						
							| 6 |  | pmatcollpw1.x |  | 
						
							| 7 | 1 2 3 4 5 6 | pmatcollpw1 |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | simp1 |  | 
						
							| 10 |  | nn0ex |  | 
						
							| 11 | 10 | a1i |  | 
						
							| 12 | 1 | ply1ring |  | 
						
							| 13 | 12 | 3ad2ant2 |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 9 | adantr |  | 
						
							| 16 | 13 | adantr |  | 
						
							| 17 |  | simp1l2 |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 |  | simp2 |  | 
						
							| 22 |  | simp3 |  | 
						
							| 23 |  | simp2 |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 |  | simp3 |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 | 24 26 27 | 3jca |  | 
						
							| 29 | 28 | 3ad2ant1 |  | 
						
							| 30 | 1 2 3 18 20 | decpmatcl |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 | 18 19 20 21 22 31 | matecld |  | 
						
							| 33 |  | simp1r |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 19 1 6 4 34 5 14 | ply1tmcl |  | 
						
							| 36 | 17 32 33 35 | syl3anc |  | 
						
							| 37 | 2 14 3 15 16 36 | matbas2d |  | 
						
							| 38 | 1 2 3 4 5 6 | pmatcollpw2lem |  | 
						
							| 39 | 2 3 8 9 11 13 37 38 | matgsum |  | 
						
							| 40 | 7 39 | eqtr4d |  |