Metamath Proof Explorer


Theorem polfvalN

Description: The projective subspace polarity function. (Contributed by NM, 23-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses polfval.o ˙=ocK
polfval.a A=AtomsK
polfval.m M=pmapK
polfval.p P=𝑃K
Assertion polfvalN KBP=m𝒫AApmM˙p

Proof

Step Hyp Ref Expression
1 polfval.o ˙=ocK
2 polfval.a A=AtomsK
3 polfval.m M=pmapK
4 polfval.p P=𝑃K
5 elex KBKV
6 fveq2 h=KAtomsh=AtomsK
7 6 2 eqtr4di h=KAtomsh=A
8 7 pweqd h=K𝒫Atomsh=𝒫A
9 fveq2 h=Kpmaph=pmapK
10 9 3 eqtr4di h=Kpmaph=M
11 fveq2 h=Koch=ocK
12 11 1 eqtr4di h=Koch=˙
13 12 fveq1d h=Kochp=˙p
14 10 13 fveq12d h=Kpmaphochp=M˙p
15 14 adantr h=Kpmpmaphochp=M˙p
16 15 iineq2dv h=Kpmpmaphochp=pmM˙p
17 7 16 ineq12d h=KAtomshpmpmaphochp=ApmM˙p
18 8 17 mpteq12dv h=Km𝒫AtomshAtomshpmpmaphochp=m𝒫AApmM˙p
19 df-polarityN 𝑃=hVm𝒫AtomshAtomshpmpmaphochp
20 2 fvexi AV
21 20 pwex 𝒫AV
22 21 mptex m𝒫AApmM˙pV
23 18 19 22 fvmpt KV𝑃K=m𝒫AApmM˙p
24 4 23 eqtrid KVP=m𝒫AApmM˙p
25 5 24 syl KBP=m𝒫AApmM˙p