| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsgsum.y |  | 
						
							| 2 |  | prdsgsum.b |  | 
						
							| 3 |  | prdsgsum.z |  | 
						
							| 4 |  | prdsgsum.i |  | 
						
							| 5 |  | prdsgsum.j |  | 
						
							| 6 |  | prdsgsum.s |  | 
						
							| 7 |  | prdsgsum.r |  | 
						
							| 8 |  | prdsgsum.f |  | 
						
							| 9 |  | prdsgsum.w |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 7 | fmpttd |  | 
						
							| 12 | 11 | ffnd |  | 
						
							| 13 | 1 4 6 11 | prdscmnd |  | 
						
							| 14 | 8 | anassrs |  | 
						
							| 15 | 14 | an32s |  | 
						
							| 16 | 15 | ralrimiva |  | 
						
							| 17 | 7 | ralrimiva |  | 
						
							| 18 | 1 10 6 4 17 2 | prdsbasmpt2 |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 16 19 | mpbird |  | 
						
							| 21 | 20 | fmpttd |  | 
						
							| 22 | 10 3 13 5 21 9 | gsumcl |  | 
						
							| 23 | 1 10 6 4 12 22 | prdsbasfn |  | 
						
							| 24 |  | nfcv |  | 
						
							| 25 |  | nfcv |  | 
						
							| 26 |  | nfcv |  | 
						
							| 27 |  | nfmpt1 |  | 
						
							| 28 | 26 27 | nfmpt |  | 
						
							| 29 | 24 25 28 | nfov |  | 
						
							| 30 | 29 | dffn5f |  | 
						
							| 31 | 23 30 | sylib |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 33 | fvmpt2 |  | 
						
							| 35 | 32 14 34 | syl2an2r |  | 
						
							| 36 | 35 | mpteq2dva |  | 
						
							| 37 | 36 | oveq2d |  | 
						
							| 38 | 13 | adantr |  | 
						
							| 39 |  | cmnmnd |  | 
						
							| 40 | 7 39 | syl |  | 
						
							| 41 | 5 | adantr |  | 
						
							| 42 | 4 | adantr |  | 
						
							| 43 | 6 | adantr |  | 
						
							| 44 | 40 | fmpttd |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 | 1 10 42 43 45 32 | prdspjmhm |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 47 | fvmpt2 |  | 
						
							| 49 | 32 7 48 | syl2anc |  | 
						
							| 50 | 49 | oveq2d |  | 
						
							| 51 | 46 50 | eleqtrd |  | 
						
							| 52 | 20 | adantlr |  | 
						
							| 53 | 9 | adantr |  | 
						
							| 54 |  | fveq1 |  | 
						
							| 55 |  | fveq1 |  | 
						
							| 56 | 10 3 38 40 41 51 52 53 54 55 | gsummhm2 |  | 
						
							| 57 | 37 56 | eqtr3d |  | 
						
							| 58 | 57 | mpteq2dva |  | 
						
							| 59 | 31 58 | eqtr4d |  |