| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdssgrpd.y |
|
| 2 |
|
prdssgrpd.i |
|
| 3 |
|
prdssgrpd.s |
|
| 4 |
|
prdssgrpd.r |
|
| 5 |
|
eqidd |
|
| 6 |
|
eqidd |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
3
|
elexd |
|
| 10 |
9
|
adantr |
|
| 11 |
2
|
elexd |
|
| 12 |
11
|
adantr |
|
| 13 |
4
|
adantr |
|
| 14 |
|
simprl |
|
| 15 |
|
simprr |
|
| 16 |
1 7 8 10 12 13 14 15
|
prdsplusgsgrpcl |
|
| 17 |
16
|
3impb |
|
| 18 |
4
|
ffvelcdmda |
|
| 19 |
18
|
adantlr |
|
| 20 |
9
|
ad2antrr |
|
| 21 |
11
|
ad2antrr |
|
| 22 |
4
|
ffnd |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
|
simplr1 |
|
| 25 |
|
simpr |
|
| 26 |
1 7 20 21 23 24 25
|
prdsbasprj |
|
| 27 |
|
simplr2 |
|
| 28 |
1 7 20 21 23 27 25
|
prdsbasprj |
|
| 29 |
|
simplr3 |
|
| 30 |
1 7 20 21 23 29 25
|
prdsbasprj |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
31 32
|
sgrpass |
|
| 34 |
19 26 28 30 33
|
syl13anc |
|
| 35 |
1 7 20 21 23 24 27 8 25
|
prdsplusgfval |
|
| 36 |
35
|
oveq1d |
|
| 37 |
1 7 20 21 23 27 29 8 25
|
prdsplusgfval |
|
| 38 |
37
|
oveq2d |
|
| 39 |
34 36 38
|
3eqtr4d |
|
| 40 |
39
|
mpteq2dva |
|
| 41 |
9
|
adantr |
|
| 42 |
11
|
adantr |
|
| 43 |
22
|
adantr |
|
| 44 |
16
|
3adantr3 |
|
| 45 |
|
simpr3 |
|
| 46 |
1 7 41 42 43 44 45 8
|
prdsplusgval |
|
| 47 |
|
simpr1 |
|
| 48 |
4
|
adantr |
|
| 49 |
|
simpr2 |
|
| 50 |
1 7 8 41 42 48 49 45
|
prdsplusgsgrpcl |
|
| 51 |
1 7 41 42 43 47 50 8
|
prdsplusgval |
|
| 52 |
40 46 51
|
3eqtr4d |
|
| 53 |
1
|
ovexi |
|
| 54 |
53
|
a1i |
|
| 55 |
5 6 17 52 54
|
issgrpd |
|