Metamath Proof Explorer


Theorem prdssgrpd

Description: The product of a family of semigroups is a semigroup. (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses prdssgrpd.y Y=S𝑠R
prdssgrpd.i φIW
prdssgrpd.s φSV
prdssgrpd.r No typesetting found for |- ( ph -> R : I --> Smgrp ) with typecode |-
Assertion prdssgrpd Could not format assertion : No typesetting found for |- ( ph -> Y e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 prdssgrpd.y Y=S𝑠R
2 prdssgrpd.i φIW
3 prdssgrpd.s φSV
4 prdssgrpd.r Could not format ( ph -> R : I --> Smgrp ) : No typesetting found for |- ( ph -> R : I --> Smgrp ) with typecode |-
5 eqidd φBaseY=BaseY
6 eqidd φ+Y=+Y
7 eqid BaseY=BaseY
8 eqid +Y=+Y
9 3 elexd φSV
10 9 adantr φaBaseYbBaseYSV
11 2 elexd φIV
12 11 adantr φaBaseYbBaseYIV
13 4 adantr Could not format ( ( ph /\ ( a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) ) -> R : I --> Smgrp ) : No typesetting found for |- ( ( ph /\ ( a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) ) -> R : I --> Smgrp ) with typecode |-
14 simprl φaBaseYbBaseYaBaseY
15 simprr φaBaseYbBaseYbBaseY
16 1 7 8 10 12 13 14 15 prdsplusgsgrpcl φaBaseYbBaseYa+YbBaseY
17 16 3impb φaBaseYbBaseYa+YbBaseY
18 4 ffvelcdmda Could not format ( ( ph /\ y e. I ) -> ( R ` y ) e. Smgrp ) : No typesetting found for |- ( ( ph /\ y e. I ) -> ( R ` y ) e. Smgrp ) with typecode |-
19 18 adantlr Could not format ( ( ( ph /\ ( a e. ( Base ` Y ) /\ b e. ( Base ` Y ) /\ c e. ( Base ` Y ) ) ) /\ y e. I ) -> ( R ` y ) e. Smgrp ) : No typesetting found for |- ( ( ( ph /\ ( a e. ( Base ` Y ) /\ b e. ( Base ` Y ) /\ c e. ( Base ` Y ) ) ) /\ y e. I ) -> ( R ` y ) e. Smgrp ) with typecode |-
20 9 ad2antrr φaBaseYbBaseYcBaseYyISV
21 11 ad2antrr φaBaseYbBaseYcBaseYyIIV
22 4 ffnd φRFnI
23 22 ad2antrr φaBaseYbBaseYcBaseYyIRFnI
24 simplr1 φaBaseYbBaseYcBaseYyIaBaseY
25 simpr φaBaseYbBaseYcBaseYyIyI
26 1 7 20 21 23 24 25 prdsbasprj φaBaseYbBaseYcBaseYyIayBaseRy
27 simplr2 φaBaseYbBaseYcBaseYyIbBaseY
28 1 7 20 21 23 27 25 prdsbasprj φaBaseYbBaseYcBaseYyIbyBaseRy
29 simplr3 φaBaseYbBaseYcBaseYyIcBaseY
30 1 7 20 21 23 29 25 prdsbasprj φaBaseYbBaseYcBaseYyIcyBaseRy
31 eqid BaseRy=BaseRy
32 eqid +Ry=+Ry
33 31 32 sgrpass Could not format ( ( ( R ` y ) e. Smgrp /\ ( ( a ` y ) e. ( Base ` ( R ` y ) ) /\ ( b ` y ) e. ( Base ` ( R ` y ) ) /\ ( c ` y ) e. ( Base ` ( R ` y ) ) ) ) -> ( ( ( a ` y ) ( +g ` ( R ` y ) ) ( b ` y ) ) ( +g ` ( R ` y ) ) ( c ` y ) ) = ( ( a ` y ) ( +g ` ( R ` y ) ) ( ( b ` y ) ( +g ` ( R ` y ) ) ( c ` y ) ) ) ) : No typesetting found for |- ( ( ( R ` y ) e. Smgrp /\ ( ( a ` y ) e. ( Base ` ( R ` y ) ) /\ ( b ` y ) e. ( Base ` ( R ` y ) ) /\ ( c ` y ) e. ( Base ` ( R ` y ) ) ) ) -> ( ( ( a ` y ) ( +g ` ( R ` y ) ) ( b ` y ) ) ( +g ` ( R ` y ) ) ( c ` y ) ) = ( ( a ` y ) ( +g ` ( R ` y ) ) ( ( b ` y ) ( +g ` ( R ` y ) ) ( c ` y ) ) ) ) with typecode |-
34 19 26 28 30 33 syl13anc φaBaseYbBaseYcBaseYyIay+Ryby+Rycy=ay+Ryby+Rycy
35 1 7 20 21 23 24 27 8 25 prdsplusgfval φaBaseYbBaseYcBaseYyIa+Yby=ay+Ryby
36 35 oveq1d φaBaseYbBaseYcBaseYyIa+Yby+Rycy=ay+Ryby+Rycy
37 1 7 20 21 23 27 29 8 25 prdsplusgfval φaBaseYbBaseYcBaseYyIb+Ycy=by+Rycy
38 37 oveq2d φaBaseYbBaseYcBaseYyIay+Ryb+Ycy=ay+Ryby+Rycy
39 34 36 38 3eqtr4d φaBaseYbBaseYcBaseYyIa+Yby+Rycy=ay+Ryb+Ycy
40 39 mpteq2dva φaBaseYbBaseYcBaseYyIa+Yby+Rycy=yIay+Ryb+Ycy
41 9 adantr φaBaseYbBaseYcBaseYSV
42 11 adantr φaBaseYbBaseYcBaseYIV
43 22 adantr φaBaseYbBaseYcBaseYRFnI
44 16 3adantr3 φaBaseYbBaseYcBaseYa+YbBaseY
45 simpr3 φaBaseYbBaseYcBaseYcBaseY
46 1 7 41 42 43 44 45 8 prdsplusgval φaBaseYbBaseYcBaseYa+Yb+Yc=yIa+Yby+Rycy
47 simpr1 φaBaseYbBaseYcBaseYaBaseY
48 4 adantr Could not format ( ( ph /\ ( a e. ( Base ` Y ) /\ b e. ( Base ` Y ) /\ c e. ( Base ` Y ) ) ) -> R : I --> Smgrp ) : No typesetting found for |- ( ( ph /\ ( a e. ( Base ` Y ) /\ b e. ( Base ` Y ) /\ c e. ( Base ` Y ) ) ) -> R : I --> Smgrp ) with typecode |-
49 simpr2 φaBaseYbBaseYcBaseYbBaseY
50 1 7 8 41 42 48 49 45 prdsplusgsgrpcl φaBaseYbBaseYcBaseYb+YcBaseY
51 1 7 41 42 43 47 50 8 prdsplusgval φaBaseYbBaseYcBaseYa+Yb+Yc=yIay+Ryb+Ycy
52 40 46 51 3eqtr4d φaBaseYbBaseYcBaseYa+Yb+Yc=a+Yb+Yc
53 1 ovexi YV
54 53 a1i φYV
55 5 6 17 52 54 issgrpd Could not format ( ph -> Y e. Smgrp ) : No typesetting found for |- ( ph -> Y e. Smgrp ) with typecode |-