Metamath Proof Explorer


Theorem preddowncl

Description: A property of classes that are downward closed under predecessor. (Contributed by Scott Fenton, 13-Apr-2011)

Ref Expression
Assertion preddowncl BAxBPredRAxBXBPredRBX=PredRAX

Proof

Step Hyp Ref Expression
1 eleq1 y=XyBXB
2 predeq3 y=XPredRBy=PredRBX
3 predeq3 y=XPredRAy=PredRAX
4 2 3 eqeq12d y=XPredRBy=PredRAyPredRBX=PredRAX
5 1 4 imbi12d y=XyBPredRBy=PredRAyXBPredRBX=PredRAX
6 5 imbi2d y=XBAxBPredRAxByBPredRBy=PredRAyBAxBPredRAxBXBPredRBX=PredRAX
7 predpredss BAPredRByPredRAy
8 7 ad2antrr BAxBPredRAxByBPredRByPredRAy
9 predeq3 x=yPredRAx=PredRAy
10 9 sseq1d x=yPredRAxBPredRAyB
11 10 rspccva xBPredRAxByBPredRAyB
12 11 sseld xBPredRAxByBzPredRAyzB
13 vex yV
14 13 elpredim zPredRAyzRy
15 12 14 jca2 xBPredRAxByBzPredRAyzBzRy
16 vex zV
17 16 elpred yBzPredRByzBzRy
18 17 imbi2d yBzPredRAyzPredRByzPredRAyzBzRy
19 18 adantl xBPredRAxByBzPredRAyzPredRByzPredRAyzBzRy
20 15 19 mpbird xBPredRAxByBzPredRAyzPredRBy
21 20 ssrdv xBPredRAxByBPredRAyPredRBy
22 21 adantll BAxBPredRAxByBPredRAyPredRBy
23 8 22 eqssd BAxBPredRAxByBPredRBy=PredRAy
24 23 ex BAxBPredRAxByBPredRBy=PredRAy
25 6 24 vtoclg XBBAxBPredRAxBXBPredRBX=PredRAX
26 25 pm2.43b BAxBPredRAxBXBPredRBX=PredRAX