Metamath Proof Explorer


Theorem predres

Description: Predecessor class is unaffected by restriction to the base class. (Contributed by Scott Fenton, 25-Nov-2024)

Ref Expression
Assertion predres Pred R A X = Pred R A A X

Proof

Step Hyp Ref Expression
1 ssrab2 y A | y R X A
2 sseqin2 y A | y R X A A y A | y R X = y A | y R X
3 1 2 mpbi A y A | y R X = y A | y R X
4 dfrab2 y A | y R X = y | y R X A
5 3 4 eqtr2i y | y R X A = A y A | y R X
6 iniseg X V R -1 X = y | y R X
7 6 ineq2d X V A R -1 X = A y | y R X
8 incom A y | y R X = y | y R X A
9 7 8 eqtrdi X V A R -1 X = y | y R X A
10 iniseg X V R A -1 X = y | y R A X
11 brres X V y R A X y A y R X
12 11 abbidv X V y | y R A X = y | y A y R X
13 df-rab y A | y R X = y | y A y R X
14 12 13 eqtr4di X V y | y R A X = y A | y R X
15 10 14 eqtrd X V R A -1 X = y A | y R X
16 15 ineq2d X V A R A -1 X = A y A | y R X
17 5 9 16 3eqtr4a X V A R -1 X = A R A -1 X
18 df-pred Pred R A X = A R -1 X
19 df-pred Pred R A A X = A R A -1 X
20 17 18 19 3eqtr4g X V Pred R A X = Pred R A A X
21 predprc ¬ X V Pred R A X =
22 predprc ¬ X V Pred R A A X =
23 21 22 eqtr4d ¬ X V Pred R A X = Pred R A A X
24 20 23 pm2.61i Pred R A X = Pred R A A X