Metamath Proof Explorer


Theorem preimaicomnf

Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimaicomnf.1 φF:A*
preimaicomnf.2 φB*
Assertion preimaicomnf φF-1−∞B=xA|Fx<B

Proof

Step Hyp Ref Expression
1 preimaicomnf.1 φF:A*
2 preimaicomnf.2 φB*
3 1 ffnd φFFnA
4 fncnvima2 FFnAF-1−∞B=xA|Fx−∞B
5 3 4 syl φF-1−∞B=xA|Fx−∞B
6 mnfxr −∞*
7 6 a1i φxAFx−∞B−∞*
8 2 ad2antrr φxAFx−∞BB*
9 simpr φxAFx−∞BFx−∞B
10 icoltub −∞*B*Fx−∞BFx<B
11 7 8 9 10 syl3anc φxAFx−∞BFx<B
12 11 ex φxAFx−∞BFx<B
13 6 a1i φxAFx<B−∞*
14 2 ad2antrr φxAFx<BB*
15 1 ffvelcdmda φxAFx*
16 15 adantr φxAFx<BFx*
17 15 mnfled φxA−∞Fx
18 17 adantr φxAFx<B−∞Fx
19 simpr φxAFx<BFx<B
20 13 14 16 18 19 elicod φxAFx<BFx−∞B
21 20 ex φxAFx<BFx−∞B
22 12 21 impbid φxAFx−∞BFx<B
23 22 rabbidva φxA|Fx−∞B=xA|Fx<B
24 5 23 eqtrd φF-1−∞B=xA|Fx<B