Metamath Proof Explorer


Theorem preimaiocmnf

Description: Preimage of a right-closed interval, unbounded below. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses preimaiocmnf.1 φF:A
preimaiocmnf.2 φB*
Assertion preimaiocmnf φF-1−∞B=xA|FxB

Proof

Step Hyp Ref Expression
1 preimaiocmnf.1 φF:A
2 preimaiocmnf.2 φB*
3 1 ffnd φFFnA
4 fncnvima2 FFnAF-1−∞B=xA|Fx−∞B
5 3 4 syl φF-1−∞B=xA|Fx−∞B
6 mnfxr −∞*
7 6 a1i φFx−∞B−∞*
8 2 adantr φFx−∞BB*
9 simpr φFx−∞BFx−∞B
10 7 8 9 iocleubd φFx−∞BFxB
11 10 ex φFx−∞BFxB
12 11 adantr φxAFx−∞BFxB
13 6 a1i φxAFxB−∞*
14 2 adantr φFxBB*
15 14 adantlr φxAFxBB*
16 1 ffvelcdmda φxAFx
17 16 rexrd φxAFx*
18 17 adantr φxAFxBFx*
19 16 mnfltd φxA−∞<Fx
20 19 adantr φxAFxB−∞<Fx
21 simpr φxAFxBFxB
22 13 15 18 20 21 eliocd φxAFxBFx−∞B
23 22 ex φxAFxBFx−∞B
24 12 23 impbid φxAFx−∞BFxB
25 24 rabbidva φxA|Fx−∞B=xA|FxB
26 5 25 eqtrd φF-1−∞B=xA|FxB