Metamath Proof Explorer


Theorem prob01

Description: A probability is an element of [ 0 , 1 ]. First axiom of Kolmogorov. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion prob01 P Prob A dom P P A 0 1

Proof

Step Hyp Ref Expression
1 domprobmeas P Prob P measures dom P
2 measvxrge0 P measures dom P A dom P P A 0 +∞
3 1 2 sylan P Prob A dom P P A 0 +∞
4 elxrge0 P A 0 +∞ P A * 0 P A
5 3 4 sylib P Prob A dom P P A * 0 P A
6 1 adantr P Prob A dom P P measures dom P
7 simpr P Prob A dom P A dom P
8 measbase P measures dom P dom P ran sigAlgebra
9 unielsiga dom P ran sigAlgebra dom P dom P
10 6 8 9 3syl P Prob A dom P dom P dom P
11 elssuni A dom P A dom P
12 11 adantl P Prob A dom P A dom P
13 6 7 10 12 measssd P Prob A dom P P A P dom P
14 probtot P Prob P dom P = 1
15 14 breq2d P Prob P A P dom P P A 1
16 15 adantr P Prob A dom P P A P dom P P A 1
17 13 16 mpbid P Prob A dom P P A 1
18 df-3an P A * 0 P A P A 1 P A * 0 P A P A 1
19 5 17 18 sylanbrc P Prob A dom P P A * 0 P A P A 1
20 0xr 0 *
21 1xr 1 *
22 elicc1 0 * 1 * P A 0 1 P A * 0 P A P A 1
23 20 21 22 mp2an P A 0 1 P A * 0 P A P A 1
24 19 23 sylibr P Prob A dom P P A 0 1