| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
simpr |
|
| 3 |
|
ax-1ne0 |
|
| 4 |
3
|
a1i |
|
| 5 |
1
|
prodfclim1 |
|
| 6 |
5
|
adantl |
|
| 7 |
|
simpl |
|
| 8 |
|
1ex |
|
| 9 |
8
|
fvconst2 |
|
| 10 |
|
ifid |
|
| 11 |
9 10
|
eqtr4di |
|
| 12 |
11
|
adantl |
|
| 13 |
|
1cnd |
|
| 14 |
1 2 4 6 7 12 13
|
zprodn0 |
|
| 15 |
|
uzf |
|
| 16 |
15
|
fdmi |
|
| 17 |
16
|
eleq2i |
|
| 18 |
|
ndmfv |
|
| 19 |
17 18
|
sylnbir |
|
| 20 |
19
|
sseq2d |
|
| 21 |
20
|
biimpac |
|
| 22 |
|
ss0 |
|
| 23 |
|
prodeq1 |
|
| 24 |
|
prod0 |
|
| 25 |
23 24
|
eqtrdi |
|
| 26 |
21 22 25
|
3syl |
|
| 27 |
14 26
|
pm2.61dan |
|
| 28 |
|
fz1f1o |
|
| 29 |
|
eqidd |
|
| 30 |
|
simpl |
|
| 31 |
|
simpr |
|
| 32 |
|
1cnd |
|
| 33 |
|
elfznn |
|
| 34 |
8
|
fvconst2 |
|
| 35 |
33 34
|
syl |
|
| 36 |
35
|
adantl |
|
| 37 |
29 30 31 32 36
|
fprod |
|
| 38 |
|
nnuz |
|
| 39 |
38
|
prodf1 |
|
| 40 |
39
|
adantr |
|
| 41 |
37 40
|
eqtrd |
|
| 42 |
41
|
ex |
|
| 43 |
42
|
exlimdv |
|
| 44 |
43
|
imp |
|
| 45 |
25 44
|
jaoi |
|
| 46 |
28 45
|
syl |
|
| 47 |
27 46
|
jaoi |
|