Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005) (Revised by Mario Carneiro, 27-May-2016) (Revised by AV, 9-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prodge0rd.1 | |
|
prodge0rd.2 | |
||
prodge0rd.3 | |
||
Assertion | prodge0rd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodge0rd.1 | |
|
2 | prodge0rd.2 | |
|
3 | prodge0rd.3 | |
|
4 | 0red | |
|
5 | 1 | rpred | |
6 | 5 2 | remulcld | |
7 | 4 6 3 | lensymd | |
8 | 5 | adantr | |
9 | 2 | renegcld | |
10 | 9 | adantr | |
11 | 1 | rpgt0d | |
12 | 11 | adantr | |
13 | simpr | |
|
14 | 8 10 12 13 | mulgt0d | |
15 | 5 | recnd | |
16 | 15 | adantr | |
17 | 2 | recnd | |
18 | 17 | adantr | |
19 | 16 18 | mulneg2d | |
20 | 14 19 | breqtrd | |
21 | 20 | ex | |
22 | 2 | lt0neg1d | |
23 | 6 | lt0neg1d | |
24 | 21 22 23 | 3imtr4d | |
25 | 7 24 | mtod | |
26 | 4 2 25 | nltled | |