Metamath Proof Explorer


Theorem prodge0rd

Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005) (Revised by Mario Carneiro, 27-May-2016) (Revised by AV, 9-Jul-2022)

Ref Expression
Hypotheses prodge0rd.1 φA+
prodge0rd.2 φB
prodge0rd.3 φ0AB
Assertion prodge0rd φ0B

Proof

Step Hyp Ref Expression
1 prodge0rd.1 φA+
2 prodge0rd.2 φB
3 prodge0rd.3 φ0AB
4 0red φ0
5 1 rpred φA
6 5 2 remulcld φAB
7 4 6 3 lensymd φ¬AB<0
8 5 adantr φ0<BA
9 2 renegcld φB
10 9 adantr φ0<BB
11 1 rpgt0d φ0<A
12 11 adantr φ0<B0<A
13 simpr φ0<B0<B
14 8 10 12 13 mulgt0d φ0<B0<AB
15 5 recnd φA
16 15 adantr φ0<BA
17 2 recnd φB
18 17 adantr φ0<BB
19 16 18 mulneg2d φ0<BAB=AB
20 14 19 breqtrd φ0<B0<AB
21 20 ex φ0<B0<AB
22 2 lt0neg1d φB<00<B
23 6 lt0neg1d φAB<00<AB
24 21 22 23 3imtr4d φB<0AB<0
25 7 24 mtod φ¬B<0
26 4 2 25 nltled φ0B