Description: A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prodpr.1 | |
|
prodpr.2 | |
||
prodpr.a | |
||
prodpr.b | |
||
prodpr.e | |
||
prodpr.f | |
||
prodpr.3 | |
||
prodtp.1 | |
||
prodtp.c | |
||
prodtp.g | |
||
prodtp.2 | |
||
prodtp.3 | |
||
Assertion | prodtp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodpr.1 | |
|
2 | prodpr.2 | |
|
3 | prodpr.a | |
|
4 | prodpr.b | |
|
5 | prodpr.e | |
|
6 | prodpr.f | |
|
7 | prodpr.3 | |
|
8 | prodtp.1 | |
|
9 | prodtp.c | |
|
10 | prodtp.g | |
|
11 | prodtp.2 | |
|
12 | prodtp.3 | |
|
13 | disjprsn | |
|
14 | 11 12 13 | syl2anc | |
15 | df-tp | |
|
16 | 15 | a1i | |
17 | tpfi | |
|
18 | 17 | a1i | |
19 | vex | |
|
20 | 19 | eltp | |
21 | 1 | adantl | |
22 | 5 | adantr | |
23 | 21 22 | eqeltrd | |
24 | 23 | adantlr | |
25 | 2 | adantl | |
26 | 6 | adantr | |
27 | 25 26 | eqeltrd | |
28 | 27 | adantlr | |
29 | 8 | adantl | |
30 | 10 | adantr | |
31 | 29 30 | eqeltrd | |
32 | 31 | adantlr | |
33 | simpr | |
|
34 | 24 28 32 33 | mpjao3dan | |
35 | 20 34 | sylan2b | |
36 | 14 16 18 35 | fprodsplit | |
37 | 1 2 3 4 5 6 7 | prodpr | |
38 | 8 | prodsn | |
39 | 9 10 38 | syl2anc | |
40 | 37 39 | oveq12d | |
41 | 36 40 | eqtrd | |