Metamath Proof Explorer


Theorem prodtp

Description: A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses prodpr.1 k=AD=E
prodpr.2 k=BD=F
prodpr.a φAV
prodpr.b φBW
prodpr.e φE
prodpr.f φF
prodpr.3 φAB
prodtp.1 k=CD=G
prodtp.c φCX
prodtp.g φG
prodtp.2 φAC
prodtp.3 φBC
Assertion prodtp φkABCD=EFG

Proof

Step Hyp Ref Expression
1 prodpr.1 k=AD=E
2 prodpr.2 k=BD=F
3 prodpr.a φAV
4 prodpr.b φBW
5 prodpr.e φE
6 prodpr.f φF
7 prodpr.3 φAB
8 prodtp.1 k=CD=G
9 prodtp.c φCX
10 prodtp.g φG
11 prodtp.2 φAC
12 prodtp.3 φBC
13 disjprsn ACBCABC=
14 11 12 13 syl2anc φABC=
15 df-tp ABC=ABC
16 15 a1i φABC=ABC
17 tpfi ABCFin
18 17 a1i φABCFin
19 vex kV
20 19 eltp kABCk=Ak=Bk=C
21 1 adantl φk=AD=E
22 5 adantr φk=AE
23 21 22 eqeltrd φk=AD
24 23 adantlr φk=Ak=Bk=Ck=AD
25 2 adantl φk=BD=F
26 6 adantr φk=BF
27 25 26 eqeltrd φk=BD
28 27 adantlr φk=Ak=Bk=Ck=BD
29 8 adantl φk=CD=G
30 10 adantr φk=CG
31 29 30 eqeltrd φk=CD
32 31 adantlr φk=Ak=Bk=Ck=CD
33 simpr φk=Ak=Bk=Ck=Ak=Bk=C
34 24 28 32 33 mpjao3dan φk=Ak=Bk=CD
35 20 34 sylan2b φkABCD
36 14 16 18 35 fprodsplit φkABCD=kABDkCD
37 1 2 3 4 5 6 7 prodpr φkABD=EF
38 8 prodsn CXGkCD=G
39 9 10 38 syl2anc φkCD=G
40 37 39 oveq12d φkABDkCD=EFG
41 36 40 eqtrd φkABCD=EFG