Metamath Proof Explorer


Theorem prprelprb

Description: A set is an element of the set of all proper unordered pairs over a given set X iff it is a pair of different elements of the set X . (Contributed by AV, 7-May-2023)

Ref Expression
Assertion prprelprb PPrPairsXXVaXbXP=abab

Proof

Step Hyp Ref Expression
1 prprvalpw XVPrPairsX=p𝒫X|aXbXabp=ab
2 1 eleq2d XVPPrPairsXPp𝒫X|aXbXabp=ab
3 eqeq1 p=Pp=abP=ab
4 3 anbi2d p=Pabp=ababP=ab
5 4 2rexbidv p=PaXbXabp=abaXbXabP=ab
6 5 elrab Pp𝒫X|aXbXabp=abP𝒫XaXbXabP=ab
7 2 6 bitrdi XVPPrPairsXP𝒫XaXbXabP=ab
8 pm3.22 abP=abP=abab
9 8 a1i P𝒫XaXbXabP=abP=abab
10 9 reximdvva P𝒫XaXbXabP=abaXbXP=abab
11 10 imp P𝒫XaXbXabP=abaXbXP=abab
12 11 anim2i XVP𝒫XaXbXabP=abXVaXbXP=abab
13 12 ex XVP𝒫XaXbXabP=abXVaXbXP=abab
14 simpr XVaXbXP=ababP=abab
15 14 ancomd XVaXbXP=abababP=ab
16 prelpwi aXbXab𝒫X
17 16 adantl XVaXbXab𝒫X
18 17 adantr XVaXbXP=ababab𝒫X
19 eleq1 P=abP𝒫Xab𝒫X
20 19 adantr P=ababP𝒫Xab𝒫X
21 20 adantl XVaXbXP=ababP𝒫Xab𝒫X
22 18 21 mpbird XVaXbXP=ababP𝒫X
23 15 22 jca XVaXbXP=abababP=abP𝒫X
24 23 ex XVaXbXP=abababP=abP𝒫X
25 24 reximdvva XVaXbXP=ababaXbXabP=abP𝒫X
26 25 imp XVaXbXP=ababaXbXabP=abP𝒫X
27 r19.41vv aXbXabP=abP𝒫XaXbXabP=abP𝒫X
28 27 biancomi aXbXabP=abP𝒫XP𝒫XaXbXabP=ab
29 26 28 sylib XVaXbXP=ababP𝒫XaXbXabP=ab
30 13 29 impbid1 XVP𝒫XaXbXabP=abXVaXbXP=abab
31 7 30 bitrd XVPPrPairsXXVaXbXP=abab
32 fvprc ¬XVPrPairsX=
33 32 eleq2d ¬XVPPrPairsXP
34 noel ¬P
35 pm2.21 ¬PPXVaXbXP=abab
36 34 35 mp1i ¬XVPXVaXbXP=abab
37 pm2.21 ¬XVXVaXbXP=ababP
38 37 impd ¬XVXVaXbXP=ababP
39 36 38 impbid ¬XVPXVaXbXP=abab
40 33 39 bitrd ¬XVPPrPairsXXVaXbXP=abab
41 31 40 pm2.61i PPrPairsXXVaXbXP=abab