Description: A set is an element of the set of all proper unordered pairs over a given set X iff it is a pair of different elements of the set X . (Contributed by AV, 7-May-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | prprelprb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprvalpw | |
|
2 | 1 | eleq2d | |
3 | eqeq1 | |
|
4 | 3 | anbi2d | |
5 | 4 | 2rexbidv | |
6 | 5 | elrab | |
7 | 2 6 | bitrdi | |
8 | pm3.22 | |
|
9 | 8 | a1i | |
10 | 9 | reximdvva | |
11 | 10 | imp | |
12 | 11 | anim2i | |
13 | 12 | ex | |
14 | simpr | |
|
15 | 14 | ancomd | |
16 | prelpwi | |
|
17 | 16 | adantl | |
18 | 17 | adantr | |
19 | eleq1 | |
|
20 | 19 | adantr | |
21 | 20 | adantl | |
22 | 18 21 | mpbird | |
23 | 15 22 | jca | |
24 | 23 | ex | |
25 | 24 | reximdvva | |
26 | 25 | imp | |
27 | r19.41vv | |
|
28 | 27 | biancomi | |
29 | 26 28 | sylib | |
30 | 13 29 | impbid1 | |
31 | 7 30 | bitrd | |
32 | fvprc | |
|
33 | 32 | eleq2d | |
34 | noel | |
|
35 | pm2.21 | |
|
36 | 34 35 | mp1i | |
37 | pm2.21 | |
|
38 | 37 | impd | |
39 | 36 38 | impbid | |
40 | 33 39 | bitrd | |
41 | 31 40 | pm2.61i | |