Metamath Proof Explorer


Theorem prsrn

Description: Range of the relation of a proset. (Contributed by Thierry Arnoux, 11-Sep-2018)

Ref Expression
Hypotheses ordtNEW.b B=BaseK
ordtNEW.l ˙=KB×B
Assertion prsrn KProsetran˙=B

Proof

Step Hyp Ref Expression
1 ordtNEW.b B=BaseK
2 ordtNEW.l ˙=KB×B
3 2 rneqi ran˙=ranKB×B
4 3 eleq2i xran˙xranKB×B
5 vex xV
6 5 elrn2 xranKB×ByyxKB×B
7 eqid K=K
8 1 7 prsref KProsetxBxKx
9 df-br xKxxxK
10 8 9 sylib KProsetxBxxK
11 simpr KProsetxBxB
12 11 11 opelxpd KProsetxBxxB×B
13 10 12 elind KProsetxBxxKB×B
14 opeq1 y=xyx=xx
15 14 eleq1d y=xyxKB×BxxKB×B
16 5 15 spcev xxKB×ByyxKB×B
17 13 16 syl KProsetxByyxKB×B
18 17 ex KProsetxByyxKB×B
19 elinel2 yxKB×ByxB×B
20 opelxp2 yxB×BxB
21 19 20 syl yxKB×BxB
22 21 exlimiv yyxKB×BxB
23 18 22 impbid1 KProsetxByyxKB×B
24 6 23 bitr4id KProsetxranKB×BxB
25 4 24 bitrid KProsetxran˙xB
26 25 eqrdv KProsetran˙=B