Metamath Proof Explorer


Theorem prv0

Description: Every wff encoded as U is true in an "empty model" ( M = (/) ). Since |= is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of |= should not be interpreted as the empty model, because E. x x = x is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023)

Ref Expression
Assertion prv0 UFmlaωU

Proof

Step Hyp Ref Expression
1 sate0 UFmlaωSatU=SatωU
2 peano1 ω
3 2 n0ii ¬ω=
4 3 intnan ¬x=ω=
5 4 a1i UFmlaω¬x=ω=
6 f00 x:ωx=ω=
7 5 6 sylnibr UFmlaω¬x:ω
8 0ex V
9 8 8 pm3.2i VV
10 satfvel VVUFmlaωxSatωUx:ω
11 9 10 mp3an1 UFmlaωxSatωUx:ω
12 7 11 mtand UFmlaω¬xSatωU
13 12 alrimiv UFmlaωx¬xSatωU
14 eq0 SatωU=x¬xSatωU
15 13 14 sylibr UFmlaωSatωU=
16 1 15 eqtrd UFmlaωSatU=
17 prv VUFmlaωUSatU=ω
18 8 17 mpan UFmlaωUSatU=ω
19 2 ne0ii ω
20 map0b ωω=
21 19 20 mp1i UFmlaωω=
22 21 eqeq2d UFmlaωSatU=ωSatU=
23 18 22 bitrd UFmlaωUSatU=
24 16 23 mpbird UFmlaωU