Metamath Proof Explorer


Theorem prv1n

Description: No wff encoded as a Godel-set of membership is true in a model with only one element. (Contributed by AV, 19-Nov-2023)

Ref Expression
Assertion prv1n IωJωXV¬XI𝑔J

Proof

Step Hyp Ref Expression
1 eqid ω×X=ω×X
2 omex ωV
3 snex XV
4 2 3 xpex ω×XV
5 eqeq1 a=ω×Xa=ω×Xω×X=ω×X
6 4 5 spcev ω×X=ω×Xaa=ω×X
7 1 6 mp1i IωJωXVaa=ω×X
8 3 2 pm3.2i XVωV
9 elmapg XVωVaXωa:ωX
10 8 9 mp1i IωJωXVaXωa:ωX
11 fconst2g XVa:ωXa=ω×X
12 11 3ad2ant3 IωJωXVa:ωXa=ω×X
13 10 12 bitrd IωJωXVaXωa=ω×X
14 13 exbidv IωJωXVaaXωaa=ω×X
15 7 14 mpbird IωJωXVaaXω
16 neq0 ¬Xω=aaXω
17 15 16 sylibr IωJωXV¬Xω=
18 eqcom Xω==Xω
19 17 18 sylnib IωJωXV¬=Xω
20 ovex I𝑔JV
21 3 20 pm3.2i XVI𝑔JV
22 prv XVI𝑔JVXI𝑔JXSatI𝑔J=Xω
23 21 22 mp1i IωJωXVXI𝑔JXSatI𝑔J=Xω
24 goel IωJωI𝑔J=IJ
25 0ex V
26 25 snid
27 26 a1i IωJω
28 opelxpi IωJωIJω×ω
29 27 28 opelxpd IωJωIJ×ω×ω
30 24 29 eqeltrd IωJωI𝑔J×ω×ω
31 fmla0xp Fmla=×ω×ω
32 30 31 eleqtrrdi IωJωI𝑔JFmla
33 32 3adant3 IωJωXVI𝑔JFmla
34 satefvfmla0 XVI𝑔JFmlaXSatI𝑔J=aXω|a1st2ndI𝑔Ja2nd2ndI𝑔J
35 3 33 34 sylancr IωJωXVXSatI𝑔J=aXω|a1st2ndI𝑔Ja2nd2ndI𝑔J
36 24 fveq2d IωJω2ndI𝑔J=2ndIJ
37 opex IJV
38 25 37 op2nd 2ndIJ=IJ
39 36 38 eqtrdi IωJω2ndI𝑔J=IJ
40 39 fveq2d IωJω1st2ndI𝑔J=1stIJ
41 op1stg IωJω1stIJ=I
42 40 41 eqtrd IωJω1st2ndI𝑔J=I
43 42 fveq2d IωJωa1st2ndI𝑔J=aI
44 39 fveq2d IωJω2nd2ndI𝑔J=2ndIJ
45 op2ndg IωJω2ndIJ=J
46 44 45 eqtrd IωJω2nd2ndI𝑔J=J
47 46 fveq2d IωJωa2nd2ndI𝑔J=aJ
48 43 47 eleq12d IωJωa1st2ndI𝑔Ja2nd2ndI𝑔JaIaJ
49 48 rabbidv IωJωaXω|a1st2ndI𝑔Ja2nd2ndI𝑔J=aXω|aIaJ
50 49 3adant3 IωJωXVaXω|a1st2ndI𝑔Ja2nd2ndI𝑔J=aXω|aIaJ
51 elmapi aXωa:ωX
52 elirr ¬XX
53 fvconst a:ωXIωaI=X
54 53 3ad2antr1 a:ωXIωJωXVaI=X
55 fvconst a:ωXJωaJ=X
56 55 3ad2antr2 a:ωXIωJωXVaJ=X
57 54 56 eleq12d a:ωXIωJωXVaIaJXX
58 52 57 mtbiri a:ωXIωJωXV¬aIaJ
59 58 ex a:ωXIωJωXV¬aIaJ
60 51 59 syl aXωIωJωXV¬aIaJ
61 60 impcom IωJωXVaXω¬aIaJ
62 61 ralrimiva IωJωXVaXω¬aIaJ
63 rabeq0 aXω|aIaJ=aXω¬aIaJ
64 62 63 sylibr IωJωXVaXω|aIaJ=
65 50 64 eqtrd IωJωXVaXω|a1st2ndI𝑔Ja2nd2ndI𝑔J=
66 35 65 eqtrd IωJωXVXSatI𝑔J=
67 66 eqeq1d IωJωXVXSatI𝑔J=Xω=Xω
68 23 67 bitrd IωJωXVXI𝑔J=Xω
69 19 68 mtbird IωJωXV¬XI𝑔J