Description: No wff encoded as a Godel-set of membership is true in a model with only one element. (Contributed by AV, 19-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | prv1n | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | omex | |
|
3 | snex | |
|
4 | 2 3 | xpex | |
5 | eqeq1 | |
|
6 | 4 5 | spcev | |
7 | 1 6 | mp1i | |
8 | 3 2 | pm3.2i | |
9 | elmapg | |
|
10 | 8 9 | mp1i | |
11 | fconst2g | |
|
12 | 11 | 3ad2ant3 | |
13 | 10 12 | bitrd | |
14 | 13 | exbidv | |
15 | 7 14 | mpbird | |
16 | neq0 | |
|
17 | 15 16 | sylibr | |
18 | eqcom | |
|
19 | 17 18 | sylnib | |
20 | ovex | |
|
21 | 3 20 | pm3.2i | |
22 | prv | |
|
23 | 21 22 | mp1i | |
24 | goel | |
|
25 | 0ex | |
|
26 | 25 | snid | |
27 | 26 | a1i | |
28 | opelxpi | |
|
29 | 27 28 | opelxpd | |
30 | 24 29 | eqeltrd | |
31 | fmla0xp | |
|
32 | 30 31 | eleqtrrdi | |
33 | 32 | 3adant3 | |
34 | satefvfmla0 | |
|
35 | 3 33 34 | sylancr | |
36 | 24 | fveq2d | |
37 | opex | |
|
38 | 25 37 | op2nd | |
39 | 36 38 | eqtrdi | |
40 | 39 | fveq2d | |
41 | op1stg | |
|
42 | 40 41 | eqtrd | |
43 | 42 | fveq2d | |
44 | 39 | fveq2d | |
45 | op2ndg | |
|
46 | 44 45 | eqtrd | |
47 | 46 | fveq2d | |
48 | 43 47 | eleq12d | |
49 | 48 | rabbidv | |
50 | 49 | 3adant3 | |
51 | elmapi | |
|
52 | elirr | |
|
53 | fvconst | |
|
54 | 53 | 3ad2antr1 | |
55 | fvconst | |
|
56 | 55 | 3ad2antr2 | |
57 | 54 56 | eleq12d | |
58 | 52 57 | mtbiri | |
59 | 58 | ex | |
60 | 51 59 | syl | |
61 | 60 | impcom | |
62 | 61 | ralrimiva | |
63 | rabeq0 | |
|
64 | 62 63 | sylibr | |
65 | 50 64 | eqtrd | |
66 | 35 65 | eqtrd | |
67 | 66 | eqeq1d | |
68 | 23 67 | bitrd | |
69 | 19 68 | mtbird | |