| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( _om X. { X } ) = ( _om X. { X } ) |
| 2 |
|
omex |
|- _om e. _V |
| 3 |
|
snex |
|- { X } e. _V |
| 4 |
2 3
|
xpex |
|- ( _om X. { X } ) e. _V |
| 5 |
|
eqeq1 |
|- ( a = ( _om X. { X } ) -> ( a = ( _om X. { X } ) <-> ( _om X. { X } ) = ( _om X. { X } ) ) ) |
| 6 |
4 5
|
spcev |
|- ( ( _om X. { X } ) = ( _om X. { X } ) -> E. a a = ( _om X. { X } ) ) |
| 7 |
1 6
|
mp1i |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> E. a a = ( _om X. { X } ) ) |
| 8 |
3 2
|
pm3.2i |
|- ( { X } e. _V /\ _om e. _V ) |
| 9 |
|
elmapg |
|- ( ( { X } e. _V /\ _om e. _V ) -> ( a e. ( { X } ^m _om ) <-> a : _om --> { X } ) ) |
| 10 |
8 9
|
mp1i |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( a e. ( { X } ^m _om ) <-> a : _om --> { X } ) ) |
| 11 |
|
fconst2g |
|- ( X e. V -> ( a : _om --> { X } <-> a = ( _om X. { X } ) ) ) |
| 12 |
11
|
3ad2ant3 |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( a : _om --> { X } <-> a = ( _om X. { X } ) ) ) |
| 13 |
10 12
|
bitrd |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( a e. ( { X } ^m _om ) <-> a = ( _om X. { X } ) ) ) |
| 14 |
13
|
exbidv |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( E. a a e. ( { X } ^m _om ) <-> E. a a = ( _om X. { X } ) ) ) |
| 15 |
7 14
|
mpbird |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> E. a a e. ( { X } ^m _om ) ) |
| 16 |
|
neq0 |
|- ( -. ( { X } ^m _om ) = (/) <-> E. a a e. ( { X } ^m _om ) ) |
| 17 |
15 16
|
sylibr |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. ( { X } ^m _om ) = (/) ) |
| 18 |
|
eqcom |
|- ( ( { X } ^m _om ) = (/) <-> (/) = ( { X } ^m _om ) ) |
| 19 |
17 18
|
sylnib |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. (/) = ( { X } ^m _om ) ) |
| 20 |
|
ovex |
|- ( I e.g J ) e. _V |
| 21 |
3 20
|
pm3.2i |
|- ( { X } e. _V /\ ( I e.g J ) e. _V ) |
| 22 |
|
prv |
|- ( ( { X } e. _V /\ ( I e.g J ) e. _V ) -> ( { X } |= ( I e.g J ) <-> ( { X } SatE ( I e.g J ) ) = ( { X } ^m _om ) ) ) |
| 23 |
21 22
|
mp1i |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } |= ( I e.g J ) <-> ( { X } SatE ( I e.g J ) ) = ( { X } ^m _om ) ) ) |
| 24 |
|
goel |
|- ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) = <. (/) , <. I , J >. >. ) |
| 25 |
|
0ex |
|- (/) e. _V |
| 26 |
25
|
snid |
|- (/) e. { (/) } |
| 27 |
26
|
a1i |
|- ( ( I e. _om /\ J e. _om ) -> (/) e. { (/) } ) |
| 28 |
|
opelxpi |
|- ( ( I e. _om /\ J e. _om ) -> <. I , J >. e. ( _om X. _om ) ) |
| 29 |
27 28
|
opelxpd |
|- ( ( I e. _om /\ J e. _om ) -> <. (/) , <. I , J >. >. e. ( { (/) } X. ( _om X. _om ) ) ) |
| 30 |
24 29
|
eqeltrd |
|- ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) e. ( { (/) } X. ( _om X. _om ) ) ) |
| 31 |
|
fmla0xp |
|- ( Fmla ` (/) ) = ( { (/) } X. ( _om X. _om ) ) |
| 32 |
30 31
|
eleqtrrdi |
|- ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) e. ( Fmla ` (/) ) ) |
| 33 |
32
|
3adant3 |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( I e.g J ) e. ( Fmla ` (/) ) ) |
| 34 |
|
satefvfmla0 |
|- ( ( { X } e. _V /\ ( I e.g J ) e. ( Fmla ` (/) ) ) -> ( { X } SatE ( I e.g J ) ) = { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } ) |
| 35 |
3 33 34
|
sylancr |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } SatE ( I e.g J ) ) = { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } ) |
| 36 |
24
|
fveq2d |
|- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( I e.g J ) ) = ( 2nd ` <. (/) , <. I , J >. >. ) ) |
| 37 |
|
opex |
|- <. I , J >. e. _V |
| 38 |
25 37
|
op2nd |
|- ( 2nd ` <. (/) , <. I , J >. >. ) = <. I , J >. |
| 39 |
36 38
|
eqtrdi |
|- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( I e.g J ) ) = <. I , J >. ) |
| 40 |
39
|
fveq2d |
|- ( ( I e. _om /\ J e. _om ) -> ( 1st ` ( 2nd ` ( I e.g J ) ) ) = ( 1st ` <. I , J >. ) ) |
| 41 |
|
op1stg |
|- ( ( I e. _om /\ J e. _om ) -> ( 1st ` <. I , J >. ) = I ) |
| 42 |
40 41
|
eqtrd |
|- ( ( I e. _om /\ J e. _om ) -> ( 1st ` ( 2nd ` ( I e.g J ) ) ) = I ) |
| 43 |
42
|
fveq2d |
|- ( ( I e. _om /\ J e. _om ) -> ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) = ( a ` I ) ) |
| 44 |
39
|
fveq2d |
|- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( 2nd ` ( I e.g J ) ) ) = ( 2nd ` <. I , J >. ) ) |
| 45 |
|
op2ndg |
|- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` <. I , J >. ) = J ) |
| 46 |
44 45
|
eqtrd |
|- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( 2nd ` ( I e.g J ) ) ) = J ) |
| 47 |
46
|
fveq2d |
|- ( ( I e. _om /\ J e. _om ) -> ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) = ( a ` J ) ) |
| 48 |
43 47
|
eleq12d |
|- ( ( I e. _om /\ J e. _om ) -> ( ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) <-> ( a ` I ) e. ( a ` J ) ) ) |
| 49 |
48
|
rabbidv |
|- ( ( I e. _om /\ J e. _om ) -> { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } = { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } ) |
| 50 |
49
|
3adant3 |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } = { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } ) |
| 51 |
|
elmapi |
|- ( a e. ( { X } ^m _om ) -> a : _om --> { X } ) |
| 52 |
|
elirr |
|- -. X e. X |
| 53 |
|
fvconst |
|- ( ( a : _om --> { X } /\ I e. _om ) -> ( a ` I ) = X ) |
| 54 |
53
|
3ad2antr1 |
|- ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> ( a ` I ) = X ) |
| 55 |
|
fvconst |
|- ( ( a : _om --> { X } /\ J e. _om ) -> ( a ` J ) = X ) |
| 56 |
55
|
3ad2antr2 |
|- ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> ( a ` J ) = X ) |
| 57 |
54 56
|
eleq12d |
|- ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> ( ( a ` I ) e. ( a ` J ) <-> X e. X ) ) |
| 58 |
52 57
|
mtbiri |
|- ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> -. ( a ` I ) e. ( a ` J ) ) |
| 59 |
58
|
ex |
|- ( a : _om --> { X } -> ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. ( a ` I ) e. ( a ` J ) ) ) |
| 60 |
51 59
|
syl |
|- ( a e. ( { X } ^m _om ) -> ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. ( a ` I ) e. ( a ` J ) ) ) |
| 61 |
60
|
impcom |
|- ( ( ( I e. _om /\ J e. _om /\ X e. V ) /\ a e. ( { X } ^m _om ) ) -> -. ( a ` I ) e. ( a ` J ) ) |
| 62 |
61
|
ralrimiva |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> A. a e. ( { X } ^m _om ) -. ( a ` I ) e. ( a ` J ) ) |
| 63 |
|
rabeq0 |
|- ( { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } = (/) <-> A. a e. ( { X } ^m _om ) -. ( a ` I ) e. ( a ` J ) ) |
| 64 |
62 63
|
sylibr |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } = (/) ) |
| 65 |
50 64
|
eqtrd |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } = (/) ) |
| 66 |
35 65
|
eqtrd |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } SatE ( I e.g J ) ) = (/) ) |
| 67 |
66
|
eqeq1d |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( ( { X } SatE ( I e.g J ) ) = ( { X } ^m _om ) <-> (/) = ( { X } ^m _om ) ) ) |
| 68 |
23 67
|
bitrd |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } |= ( I e.g J ) <-> (/) = ( { X } ^m _om ) ) ) |
| 69 |
19 68
|
mtbird |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. { X } |= ( I e.g J ) ) |