Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( _om X. { X } ) = ( _om X. { X } ) |
2 |
|
omex |
|- _om e. _V |
3 |
|
snex |
|- { X } e. _V |
4 |
2 3
|
xpex |
|- ( _om X. { X } ) e. _V |
5 |
|
eqeq1 |
|- ( a = ( _om X. { X } ) -> ( a = ( _om X. { X } ) <-> ( _om X. { X } ) = ( _om X. { X } ) ) ) |
6 |
4 5
|
spcev |
|- ( ( _om X. { X } ) = ( _om X. { X } ) -> E. a a = ( _om X. { X } ) ) |
7 |
1 6
|
mp1i |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> E. a a = ( _om X. { X } ) ) |
8 |
3 2
|
pm3.2i |
|- ( { X } e. _V /\ _om e. _V ) |
9 |
|
elmapg |
|- ( ( { X } e. _V /\ _om e. _V ) -> ( a e. ( { X } ^m _om ) <-> a : _om --> { X } ) ) |
10 |
8 9
|
mp1i |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( a e. ( { X } ^m _om ) <-> a : _om --> { X } ) ) |
11 |
|
fconst2g |
|- ( X e. V -> ( a : _om --> { X } <-> a = ( _om X. { X } ) ) ) |
12 |
11
|
3ad2ant3 |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( a : _om --> { X } <-> a = ( _om X. { X } ) ) ) |
13 |
10 12
|
bitrd |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( a e. ( { X } ^m _om ) <-> a = ( _om X. { X } ) ) ) |
14 |
13
|
exbidv |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( E. a a e. ( { X } ^m _om ) <-> E. a a = ( _om X. { X } ) ) ) |
15 |
7 14
|
mpbird |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> E. a a e. ( { X } ^m _om ) ) |
16 |
|
neq0 |
|- ( -. ( { X } ^m _om ) = (/) <-> E. a a e. ( { X } ^m _om ) ) |
17 |
15 16
|
sylibr |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. ( { X } ^m _om ) = (/) ) |
18 |
|
eqcom |
|- ( ( { X } ^m _om ) = (/) <-> (/) = ( { X } ^m _om ) ) |
19 |
17 18
|
sylnib |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. (/) = ( { X } ^m _om ) ) |
20 |
|
ovex |
|- ( I e.g J ) e. _V |
21 |
3 20
|
pm3.2i |
|- ( { X } e. _V /\ ( I e.g J ) e. _V ) |
22 |
|
prv |
|- ( ( { X } e. _V /\ ( I e.g J ) e. _V ) -> ( { X } |= ( I e.g J ) <-> ( { X } SatE ( I e.g J ) ) = ( { X } ^m _om ) ) ) |
23 |
21 22
|
mp1i |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } |= ( I e.g J ) <-> ( { X } SatE ( I e.g J ) ) = ( { X } ^m _om ) ) ) |
24 |
|
goel |
|- ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) = <. (/) , <. I , J >. >. ) |
25 |
|
0ex |
|- (/) e. _V |
26 |
25
|
snid |
|- (/) e. { (/) } |
27 |
26
|
a1i |
|- ( ( I e. _om /\ J e. _om ) -> (/) e. { (/) } ) |
28 |
|
opelxpi |
|- ( ( I e. _om /\ J e. _om ) -> <. I , J >. e. ( _om X. _om ) ) |
29 |
27 28
|
opelxpd |
|- ( ( I e. _om /\ J e. _om ) -> <. (/) , <. I , J >. >. e. ( { (/) } X. ( _om X. _om ) ) ) |
30 |
24 29
|
eqeltrd |
|- ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) e. ( { (/) } X. ( _om X. _om ) ) ) |
31 |
|
fmla0xp |
|- ( Fmla ` (/) ) = ( { (/) } X. ( _om X. _om ) ) |
32 |
30 31
|
eleqtrrdi |
|- ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) e. ( Fmla ` (/) ) ) |
33 |
32
|
3adant3 |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( I e.g J ) e. ( Fmla ` (/) ) ) |
34 |
|
satefvfmla0 |
|- ( ( { X } e. _V /\ ( I e.g J ) e. ( Fmla ` (/) ) ) -> ( { X } SatE ( I e.g J ) ) = { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } ) |
35 |
3 33 34
|
sylancr |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } SatE ( I e.g J ) ) = { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } ) |
36 |
24
|
fveq2d |
|- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( I e.g J ) ) = ( 2nd ` <. (/) , <. I , J >. >. ) ) |
37 |
|
opex |
|- <. I , J >. e. _V |
38 |
25 37
|
op2nd |
|- ( 2nd ` <. (/) , <. I , J >. >. ) = <. I , J >. |
39 |
36 38
|
eqtrdi |
|- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( I e.g J ) ) = <. I , J >. ) |
40 |
39
|
fveq2d |
|- ( ( I e. _om /\ J e. _om ) -> ( 1st ` ( 2nd ` ( I e.g J ) ) ) = ( 1st ` <. I , J >. ) ) |
41 |
|
op1stg |
|- ( ( I e. _om /\ J e. _om ) -> ( 1st ` <. I , J >. ) = I ) |
42 |
40 41
|
eqtrd |
|- ( ( I e. _om /\ J e. _om ) -> ( 1st ` ( 2nd ` ( I e.g J ) ) ) = I ) |
43 |
42
|
fveq2d |
|- ( ( I e. _om /\ J e. _om ) -> ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) = ( a ` I ) ) |
44 |
39
|
fveq2d |
|- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( 2nd ` ( I e.g J ) ) ) = ( 2nd ` <. I , J >. ) ) |
45 |
|
op2ndg |
|- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` <. I , J >. ) = J ) |
46 |
44 45
|
eqtrd |
|- ( ( I e. _om /\ J e. _om ) -> ( 2nd ` ( 2nd ` ( I e.g J ) ) ) = J ) |
47 |
46
|
fveq2d |
|- ( ( I e. _om /\ J e. _om ) -> ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) = ( a ` J ) ) |
48 |
43 47
|
eleq12d |
|- ( ( I e. _om /\ J e. _om ) -> ( ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) <-> ( a ` I ) e. ( a ` J ) ) ) |
49 |
48
|
rabbidv |
|- ( ( I e. _om /\ J e. _om ) -> { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } = { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } ) |
50 |
49
|
3adant3 |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } = { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } ) |
51 |
|
elmapi |
|- ( a e. ( { X } ^m _om ) -> a : _om --> { X } ) |
52 |
|
elirr |
|- -. X e. X |
53 |
|
fvconst |
|- ( ( a : _om --> { X } /\ I e. _om ) -> ( a ` I ) = X ) |
54 |
53
|
3ad2antr1 |
|- ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> ( a ` I ) = X ) |
55 |
|
fvconst |
|- ( ( a : _om --> { X } /\ J e. _om ) -> ( a ` J ) = X ) |
56 |
55
|
3ad2antr2 |
|- ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> ( a ` J ) = X ) |
57 |
54 56
|
eleq12d |
|- ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> ( ( a ` I ) e. ( a ` J ) <-> X e. X ) ) |
58 |
52 57
|
mtbiri |
|- ( ( a : _om --> { X } /\ ( I e. _om /\ J e. _om /\ X e. V ) ) -> -. ( a ` I ) e. ( a ` J ) ) |
59 |
58
|
ex |
|- ( a : _om --> { X } -> ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. ( a ` I ) e. ( a ` J ) ) ) |
60 |
51 59
|
syl |
|- ( a e. ( { X } ^m _om ) -> ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. ( a ` I ) e. ( a ` J ) ) ) |
61 |
60
|
impcom |
|- ( ( ( I e. _om /\ J e. _om /\ X e. V ) /\ a e. ( { X } ^m _om ) ) -> -. ( a ` I ) e. ( a ` J ) ) |
62 |
61
|
ralrimiva |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> A. a e. ( { X } ^m _om ) -. ( a ` I ) e. ( a ` J ) ) |
63 |
|
rabeq0 |
|- ( { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } = (/) <-> A. a e. ( { X } ^m _om ) -. ( a ` I ) e. ( a ` J ) ) |
64 |
62 63
|
sylibr |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> { a e. ( { X } ^m _om ) | ( a ` I ) e. ( a ` J ) } = (/) ) |
65 |
50 64
|
eqtrd |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> { a e. ( { X } ^m _om ) | ( a ` ( 1st ` ( 2nd ` ( I e.g J ) ) ) ) e. ( a ` ( 2nd ` ( 2nd ` ( I e.g J ) ) ) ) } = (/) ) |
66 |
35 65
|
eqtrd |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } SatE ( I e.g J ) ) = (/) ) |
67 |
66
|
eqeq1d |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( ( { X } SatE ( I e.g J ) ) = ( { X } ^m _om ) <-> (/) = ( { X } ^m _om ) ) ) |
68 |
23 67
|
bitrd |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> ( { X } |= ( I e.g J ) <-> (/) = ( { X } ^m _om ) ) ) |
69 |
19 68
|
mtbird |
|- ( ( I e. _om /\ J e. _om /\ X e. V ) -> -. { X } |= ( I e.g J ) ) |