| Step |
Hyp |
Ref |
Expression |
| 1 |
|
satefv |
|
| 2 |
|
incom |
|
| 3 |
|
sqxpexg |
|
| 4 |
|
inex1g |
|
| 5 |
3 4
|
syl |
|
| 6 |
2 5
|
eqeltrid |
|
| 7 |
6
|
ancli |
|
| 8 |
7
|
adantr |
|
| 9 |
|
satom |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
fveq1d |
|
| 12 |
|
satfun |
|
| 13 |
8 12
|
syl |
|
| 14 |
13
|
ffund |
|
| 15 |
10
|
eqcomd |
|
| 16 |
15
|
funeqd |
|
| 17 |
14 16
|
mpbird |
|
| 18 |
|
peano1 |
|
| 19 |
18
|
a1i |
|
| 20 |
18
|
a1i |
|
| 21 |
|
satfdmfmla |
|
| 22 |
6 20 21
|
mpd3an23 |
|
| 23 |
22
|
eqcomd |
|
| 24 |
23
|
eleq2d |
|
| 25 |
24
|
biimpa |
|
| 26 |
|
eqid |
|
| 27 |
26
|
fviunfun |
|
| 28 |
17 19 25 27
|
syl3anc |
|
| 29 |
11 28
|
eqtrd |
|
| 30 |
|
simpl |
|
| 31 |
6
|
adantr |
|
| 32 |
|
simpr |
|
| 33 |
|
eqid |
|
| 34 |
33
|
satfv0fvfmla0 |
|
| 35 |
30 31 32 34
|
syl3anc |
|
| 36 |
|
elmapi |
|
| 37 |
|
simpl |
|
| 38 |
|
fmla0xp |
|
| 39 |
38
|
eleq2i |
|
| 40 |
|
elxp |
|
| 41 |
39 40
|
bitri |
|
| 42 |
|
xp1st |
|
| 43 |
42
|
ad2antll |
|
| 44 |
|
vex |
|
| 45 |
|
vex |
|
| 46 |
44 45
|
op2ndd |
|
| 47 |
46
|
fveq2d |
|
| 48 |
47
|
eleq1d |
|
| 49 |
48
|
adantr |
|
| 50 |
43 49
|
mpbird |
|
| 51 |
50
|
exlimivv |
|
| 52 |
41 51
|
sylbi |
|
| 53 |
52
|
ad2antll |
|
| 54 |
37 53
|
ffvelcdmd |
|
| 55 |
|
xp2nd |
|
| 56 |
55
|
ad2antll |
|
| 57 |
46
|
fveq2d |
|
| 58 |
57
|
eleq1d |
|
| 59 |
58
|
adantr |
|
| 60 |
56 59
|
mpbird |
|
| 61 |
60
|
exlimivv |
|
| 62 |
41 61
|
sylbi |
|
| 63 |
62
|
ad2antll |
|
| 64 |
37 63
|
ffvelcdmd |
|
| 65 |
54 64
|
jca |
|
| 66 |
65
|
ex |
|
| 67 |
36 66
|
syl |
|
| 68 |
67
|
impcom |
|
| 69 |
|
brinxp |
|
| 70 |
69
|
bicomd |
|
| 71 |
68 70
|
syl |
|
| 72 |
|
fvex |
|
| 73 |
72
|
epeli |
|
| 74 |
71 73
|
bitrdi |
|
| 75 |
74
|
rabbidva |
|
| 76 |
35 75
|
eqtrd |
|
| 77 |
29 76
|
eqtrd |
|
| 78 |
1 77
|
eqtrd |
|