| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sategoelfvb.s |
|
| 2 |
|
ovexd |
|
| 3 |
|
simpl |
|
| 4 |
|
opeq1 |
|
| 5 |
4
|
opeq2d |
|
| 6 |
5
|
eqeq2d |
|
| 7 |
6
|
rexbidv |
|
| 8 |
7
|
adantl |
|
| 9 |
|
simpr |
|
| 10 |
|
opeq2 |
|
| 11 |
10
|
opeq2d |
|
| 12 |
11
|
eqeq2d |
|
| 13 |
12
|
adantl |
|
| 14 |
|
eqidd |
|
| 15 |
9 13 14
|
rspcedvd |
|
| 16 |
3 8 15
|
rspcedvd |
|
| 17 |
|
goel |
|
| 18 |
|
goel |
|
| 19 |
17 18
|
eqeqan12d |
|
| 20 |
19
|
2rexbidva |
|
| 21 |
16 20
|
mpbird |
|
| 22 |
|
eqeq1 |
|
| 23 |
22
|
2rexbidv |
|
| 24 |
|
fmla0 |
|
| 25 |
23 24
|
elrab2 |
|
| 26 |
2 21 25
|
sylanbrc |
|
| 27 |
|
satefvfmla0 |
|
| 28 |
26 27
|
sylan2 |
|
| 29 |
1 28
|
eqtrid |
|
| 30 |
29
|
eleq2d |
|
| 31 |
|
fveq1 |
|
| 32 |
|
fveq1 |
|
| 33 |
31 32
|
eleq12d |
|
| 34 |
33
|
elrab |
|
| 35 |
30 34
|
bitrdi |
|
| 36 |
17
|
fveq2d |
|
| 37 |
36
|
fveq2d |
|
| 38 |
|
0ex |
|
| 39 |
|
opex |
|
| 40 |
38 39
|
op2nd |
|
| 41 |
40
|
fveq2i |
|
| 42 |
|
op1stg |
|
| 43 |
41 42
|
eqtrid |
|
| 44 |
37 43
|
eqtrd |
|
| 45 |
44
|
fveq2d |
|
| 46 |
36
|
fveq2d |
|
| 47 |
40
|
fveq2i |
|
| 48 |
|
op2ndg |
|
| 49 |
47 48
|
eqtrid |
|
| 50 |
46 49
|
eqtrd |
|
| 51 |
50
|
fveq2d |
|
| 52 |
45 51
|
eleq12d |
|
| 53 |
52
|
adantl |
|
| 54 |
53
|
anbi2d |
|
| 55 |
35 54
|
bitrd |
|