Metamath Proof Explorer


Theorem psraddcl

Description: Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psraddcl.s S=ImPwSerR
psraddcl.b B=BaseS
psraddcl.p +˙=+S
psraddcl.r φRGrp
psraddcl.x φXB
psraddcl.y φYB
Assertion psraddcl φX+˙YB

Proof

Step Hyp Ref Expression
1 psraddcl.s S=ImPwSerR
2 psraddcl.b B=BaseS
3 psraddcl.p +˙=+S
4 psraddcl.r φRGrp
5 psraddcl.x φXB
6 psraddcl.y φYB
7 eqid BaseR=BaseR
8 eqid +R=+R
9 7 8 grpcl RGrpxBaseRyBaseRx+RyBaseR
10 9 3expb RGrpxBaseRyBaseRx+RyBaseR
11 4 10 sylan φxBaseRyBaseRx+RyBaseR
12 eqid f0I|f-1Fin=f0I|f-1Fin
13 1 7 12 2 5 psrelbas φX:f0I|f-1FinBaseR
14 1 7 12 2 6 psrelbas φY:f0I|f-1FinBaseR
15 ovex 0IV
16 15 rabex f0I|f-1FinV
17 16 a1i φf0I|f-1FinV
18 inidm f0I|f-1Finf0I|f-1Fin=f0I|f-1Fin
19 11 13 14 17 17 18 off φX+RfY:f0I|f-1FinBaseR
20 fvex BaseRV
21 20 16 elmap X+RfYBaseRf0I|f-1FinX+RfY:f0I|f-1FinBaseR
22 19 21 sylibr φX+RfYBaseRf0I|f-1Fin
23 1 2 8 3 5 6 psradd φX+˙Y=X+RfY
24 reldmpsr ReldommPwSer
25 24 1 2 elbasov XBIVRV
26 5 25 syl φIVRV
27 26 simpld φIV
28 1 7 12 2 27 psrbas φB=BaseRf0I|f-1Fin
29 22 23 28 3eltr4d φX+˙YB