Metamath Proof Explorer


Theorem pwfilem

Description: Lemma for pwfi . (Contributed by NM, 26-Mar-2007) Avoid ax-pow . (Revised by BTernaryTau, 7-Sep-2024)

Ref Expression
Hypothesis pwfilem.1 F=c𝒫bcx
Assertion pwfilem 𝒫bFin𝒫bxFin

Proof

Step Hyp Ref Expression
1 pwfilem.1 F=c𝒫bcx
2 pwundif 𝒫bx=𝒫bx𝒫b𝒫b
3 1 funmpt2 FunF
4 vex cV
5 vsnex xV
6 4 5 unex cxV
7 6 1 dmmpti domF=𝒫b
8 7 imaeq2i FdomF=F𝒫b
9 imadmrn FdomF=ranF
10 8 9 eqtr3i F𝒫b=ranF
11 imafi FunF𝒫bFinF𝒫bFin
12 10 11 eqeltrrid FunF𝒫bFinranFFin
13 3 12 mpan 𝒫bFinranFFin
14 eldifi d𝒫bx𝒫bd𝒫bx
15 5 elpwun d𝒫bxdx𝒫b
16 14 15 sylib d𝒫bx𝒫bdx𝒫b
17 undif1 dxx=dx
18 elpwunsn d𝒫bx𝒫bxd
19 18 snssd d𝒫bx𝒫bxd
20 ssequn2 xddx=d
21 19 20 sylib d𝒫bx𝒫bdx=d
22 17 21 eqtr2id d𝒫bx𝒫bd=dxx
23 uneq1 c=dxcx=dxx
24 23 rspceeqv dx𝒫bd=dxxc𝒫bd=cx
25 16 22 24 syl2anc d𝒫bx𝒫bc𝒫bd=cx
26 1 25 14 elrnmptd d𝒫bx𝒫bdranF
27 26 ssriv 𝒫bx𝒫branF
28 ssfi ranFFin𝒫bx𝒫branF𝒫bx𝒫bFin
29 13 27 28 sylancl 𝒫bFin𝒫bx𝒫bFin
30 unfi 𝒫bx𝒫bFin𝒫bFin𝒫bx𝒫b𝒫bFin
31 29 30 mpancom 𝒫bFin𝒫bx𝒫b𝒫bFin
32 2 31 eqeltrid 𝒫bFin𝒫bxFin