Metamath Proof Explorer


Theorem pythagtriplem2

Description: Lemma for pythagtrip . Prove the full version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion pythagtriplem2 ABnmkAB=km2n2k2mnC=km2+n2A2+B2=C2

Proof

Step Hyp Ref Expression
1 ovex km2n2V
2 ovex k2mnV
3 preq12bg ABkm2n2Vk2mnVAB=km2n2k2mnA=km2n2B=k2mnA=k2mnB=km2n2
4 1 2 3 mpanr12 ABAB=km2n2k2mnA=km2n2B=k2mnA=k2mnB=km2n2
5 4 anbi1d ABAB=km2n2k2mnC=km2+n2A=km2n2B=k2mnA=k2mnB=km2n2C=km2+n2
6 andir A=km2n2B=k2mnA=k2mnB=km2n2C=km2+n2A=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2
7 df-3an A=km2n2B=k2mnC=km2+n2A=km2n2B=k2mnC=km2+n2
8 df-3an A=k2mnB=km2n2C=km2+n2A=k2mnB=km2n2C=km2+n2
9 7 8 orbi12i A=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2A=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2
10 6 9 bitr4i A=km2n2B=k2mnA=k2mnB=km2n2C=km2+n2A=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2
11 5 10 bitrdi ABAB=km2n2k2mnC=km2+n2A=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2
12 11 rexbidv ABkAB=km2n2k2mnC=km2+n2kA=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2
13 12 2rexbidv ABnmkAB=km2n2k2mnC=km2+n2nmkA=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2
14 r19.43 kA=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2kA=km2n2B=k2mnC=km2+n2kA=k2mnB=km2n2C=km2+n2
15 14 2rexbii nmkA=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2nmkA=km2n2B=k2mnC=km2+n2kA=k2mnB=km2n2C=km2+n2
16 r19.43 mkA=km2n2B=k2mnC=km2+n2kA=k2mnB=km2n2C=km2+n2mkA=km2n2B=k2mnC=km2+n2mkA=k2mnB=km2n2C=km2+n2
17 16 rexbii nmkA=km2n2B=k2mnC=km2+n2kA=k2mnB=km2n2C=km2+n2nmkA=km2n2B=k2mnC=km2+n2mkA=k2mnB=km2n2C=km2+n2
18 r19.43 nmkA=km2n2B=k2mnC=km2+n2mkA=k2mnB=km2n2C=km2+n2nmkA=km2n2B=k2mnC=km2+n2nmkA=k2mnB=km2n2C=km2+n2
19 15 17 18 3bitri nmkA=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2nmkA=km2n2B=k2mnC=km2+n2nmkA=k2mnB=km2n2C=km2+n2
20 13 19 bitrdi ABnmkAB=km2n2k2mnC=km2+n2nmkA=km2n2B=k2mnC=km2+n2nmkA=k2mnB=km2n2C=km2+n2
21 pythagtriplem1 nmkA=km2n2B=k2mnC=km2+n2A2+B2=C2
22 21 a1i ABnmkA=km2n2B=k2mnC=km2+n2A2+B2=C2
23 3ancoma A=k2mnB=km2n2C=km2+n2B=km2n2A=k2mnC=km2+n2
24 23 rexbii kA=k2mnB=km2n2C=km2+n2kB=km2n2A=k2mnC=km2+n2
25 24 2rexbii nmkA=k2mnB=km2n2C=km2+n2nmkB=km2n2A=k2mnC=km2+n2
26 pythagtriplem1 nmkB=km2n2A=k2mnC=km2+n2B2+A2=C2
27 25 26 sylbi nmkA=k2mnB=km2n2C=km2+n2B2+A2=C2
28 nncn AA
29 28 sqcld AA2
30 nncn BB
31 30 sqcld BB2
32 addcom A2B2A2+B2=B2+A2
33 29 31 32 syl2an ABA2+B2=B2+A2
34 33 eqeq1d ABA2+B2=C2B2+A2=C2
35 27 34 imbitrrid ABnmkA=k2mnB=km2n2C=km2+n2A2+B2=C2
36 22 35 jaod ABnmkA=km2n2B=k2mnC=km2+n2nmkA=k2mnB=km2n2C=km2+n2A2+B2=C2
37 20 36 sylbid ABnmkAB=km2n2k2mnC=km2+n2A2+B2=C2