Description: Lemma for pythagtrip . Prove the full version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pythagtriplem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex | |
|
2 | ovex | |
|
3 | preq12bg | |
|
4 | 1 2 3 | mpanr12 | |
5 | 4 | anbi1d | |
6 | andir | |
|
7 | df-3an | |
|
8 | df-3an | |
|
9 | 7 8 | orbi12i | |
10 | 6 9 | bitr4i | |
11 | 5 10 | bitrdi | |
12 | 11 | rexbidv | |
13 | 12 | 2rexbidv | |
14 | r19.43 | |
|
15 | 14 | 2rexbii | |
16 | r19.43 | |
|
17 | 16 | rexbii | |
18 | r19.43 | |
|
19 | 15 17 18 | 3bitri | |
20 | 13 19 | bitrdi | |
21 | pythagtriplem1 | |
|
22 | 21 | a1i | |
23 | 3ancoma | |
|
24 | 23 | rexbii | |
25 | 24 | 2rexbii | |
26 | pythagtriplem1 | |
|
27 | 25 26 | sylbi | |
28 | nncn | |
|
29 | 28 | sqcld | |
30 | nncn | |
|
31 | 30 | sqcld | |
32 | addcom | |
|
33 | 29 31 32 | syl2an | |
34 | 33 | eqeq1d | |
35 | 27 34 | imbitrrid | |
36 | 22 35 | jaod | |
37 | 20 36 | sylbid | |