| Step |
Hyp |
Ref |
Expression |
| 1 |
|
q1pval.q |
|
| 2 |
|
q1pval.p |
|
| 3 |
|
q1pval.b |
|
| 4 |
|
q1pval.d |
|
| 5 |
|
q1pval.m |
|
| 6 |
|
q1pval.t |
|
| 7 |
2 3
|
elbasfv |
|
| 8 |
|
fveq2 |
|
| 9 |
8 2
|
eqtr4di |
|
| 10 |
9
|
csbeq1d |
|
| 11 |
2
|
fvexi |
|
| 12 |
11
|
a1i |
|
| 13 |
|
fveq2 |
|
| 14 |
13
|
adantl |
|
| 15 |
14 3
|
eqtr4di |
|
| 16 |
15
|
csbeq1d |
|
| 17 |
3
|
fvexi |
|
| 18 |
17
|
a1i |
|
| 19 |
|
simpr |
|
| 20 |
|
fveq2 |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
21 4
|
eqtr4di |
|
| 23 |
|
fveq2 |
|
| 24 |
23
|
ad2antlr |
|
| 25 |
24 5
|
eqtr4di |
|
| 26 |
|
eqidd |
|
| 27 |
|
fveq2 |
|
| 28 |
27
|
ad2antlr |
|
| 29 |
28 6
|
eqtr4di |
|
| 30 |
29
|
oveqd |
|
| 31 |
25 26 30
|
oveq123d |
|
| 32 |
22 31
|
fveq12d |
|
| 33 |
22
|
fveq1d |
|
| 34 |
32 33
|
breq12d |
|
| 35 |
19 34
|
riotaeqbidv |
|
| 36 |
19 19 35
|
mpoeq123dv |
|
| 37 |
18 36
|
csbied |
|
| 38 |
16 37
|
eqtrd |
|
| 39 |
12 38
|
csbied |
|
| 40 |
10 39
|
eqtrd |
|
| 41 |
|
df-q1p |
|
| 42 |
17 17
|
mpoex |
|
| 43 |
40 41 42
|
fvmpt |
|
| 44 |
1 43
|
eqtrid |
|
| 45 |
7 44
|
syl |
|
| 46 |
45
|
adantl |
|
| 47 |
|
id |
|
| 48 |
|
oveq2 |
|
| 49 |
47 48
|
oveqan12d |
|
| 50 |
49
|
fveq2d |
|
| 51 |
|
fveq2 |
|
| 52 |
51
|
adantl |
|
| 53 |
50 52
|
breq12d |
|
| 54 |
53
|
riotabidv |
|
| 55 |
54
|
adantl |
|
| 56 |
|
simpl |
|
| 57 |
|
simpr |
|
| 58 |
|
riotaex |
|
| 59 |
58
|
a1i |
|
| 60 |
46 55 56 57 59
|
ovmpod |
|