Metamath Proof Explorer


Theorem qcvs

Description: The field of rational numbers as left module over itself is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021)

Ref Expression
Hypothesis qcvs.q Q=ringLModfld𝑠
Assertion qcvs QℂVec

Proof

Step Hyp Ref Expression
1 qcvs.q Q=ringLModfld𝑠
2 qsubdrg SubRingfldfld𝑠DivRing
3 drngring fld𝑠DivRingfld𝑠Ring
4 3 adantl SubRingfldfld𝑠DivRingfld𝑠Ring
5 2 4 ax-mp fld𝑠Ring
6 rlmlmod fld𝑠RingringLModfld𝑠LMod
7 5 6 ax-mp ringLModfld𝑠LMod
8 2 simpri fld𝑠DivRing
9 rlmsca fld𝑠DivRingfld𝑠=ScalarringLModfld𝑠
10 9 eqcomd fld𝑠DivRingScalarringLModfld𝑠=fld𝑠
11 8 10 ax-mp ScalarringLModfld𝑠=fld𝑠
12 2 simpli SubRingfld
13 eqid ScalarringLModfld𝑠=ScalarringLModfld𝑠
14 13 isclmi ringLModfld𝑠LModScalarringLModfld𝑠=fld𝑠SubRingfldringLModfld𝑠CMod
15 7 11 12 14 mp3an ringLModfld𝑠CMod
16 rlmlvec fld𝑠DivRingringLModfld𝑠LVec
17 8 16 ax-mp ringLModfld𝑠LVec
18 15 17 elini ringLModfld𝑠CModLVec
19 df-cvs ℂVec=CModLVec
20 18 1 19 3eltr4i QℂVec