Metamath Proof Explorer


Theorem qshash

Description: The cardinality of a set with an equivalence relation is the sum of the cardinalities of its equivalence classes. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypotheses qshash.1 φ˙ErA
qshash.2 φAFin
Assertion qshash φA=xA/˙x

Proof

Step Hyp Ref Expression
1 qshash.1 φ˙ErA
2 qshash.2 φAFin
3 erex ˙ErAAFin˙V
4 1 2 3 sylc φ˙V
5 1 4 uniqs2 φA/˙=A
6 5 fveq2d φA/˙=A
7 pwfi AFin𝒫AFin
8 2 7 sylib φ𝒫AFin
9 1 qsss φA/˙𝒫A
10 8 9 ssfid φA/˙Fin
11 elpwi x𝒫AxA
12 ssfi AFinxAxFin
13 12 ex AFinxAxFin
14 2 11 13 syl2im φx𝒫AxFin
15 14 ssrdv φ𝒫AFin
16 9 15 sstrd φA/˙Fin
17 qsdisj2 ˙ErADisjxA/˙x
18 1 17 syl φDisjxA/˙x
19 10 16 18 hashuni φA/˙=xA/˙x
20 6 19 eqtr3d φA=xA/˙x