Description: Universal property of a quotient map. (Contributed by Mario Carneiro, 23-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | qtopcn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass | |
|
2 | simplrr | |
|
3 | 1 2 | fssdm | |
4 | simplll | |
|
5 | simplrl | |
|
6 | elqtop3 | |
|
7 | 4 5 6 | syl2anc | |
8 | 3 7 | mpbirand | |
9 | cnvco | |
|
10 | 9 | imaeq1i | |
11 | imaco | |
|
12 | 10 11 | eqtri | |
13 | 12 | eleq1i | |
14 | 8 13 | bitr4di | |
15 | 14 | ralbidva | |
16 | simprr | |
|
17 | 16 | biantrurd | |
18 | fof | |
|
19 | 18 | ad2antrl | |
20 | fco | |
|
21 | 16 19 20 | syl2anc | |
22 | 21 | biantrurd | |
23 | 15 17 22 | 3bitr3d | |
24 | qtoptopon | |
|
25 | 24 | ad2ant2r | |
26 | simplr | |
|
27 | iscn | |
|
28 | 25 26 27 | syl2anc | |
29 | iscn | |
|
30 | 29 | adantr | |
31 | 23 28 30 | 3bitr4d | |