Metamath Proof Explorer


Theorem qusvscpbl

Description: The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses eqgvscpbl.v B = Base M
eqgvscpbl.e ˙ = M ~ QG G
eqgvscpbl.s S = Base Scalar M
eqgvscpbl.p · ˙ = M
eqgvscpbl.m φ M LMod
eqgvscpbl.g φ G LSubSp M
eqgvscpbl.k φ K S
qusscaval.n N = M / 𝑠 M ~ QG G
qusscaval.m ˙ = N
qusvscpbl.f F = x B x M ~ QG G
qusvscpbl.u φ U B
qusvscpbl.v φ V B
Assertion qusvscpbl φ F U = F V F K · ˙ U = F K · ˙ V

Proof

Step Hyp Ref Expression
1 eqgvscpbl.v B = Base M
2 eqgvscpbl.e ˙ = M ~ QG G
3 eqgvscpbl.s S = Base Scalar M
4 eqgvscpbl.p · ˙ = M
5 eqgvscpbl.m φ M LMod
6 eqgvscpbl.g φ G LSubSp M
7 eqgvscpbl.k φ K S
8 qusscaval.n N = M / 𝑠 M ~ QG G
9 qusscaval.m ˙ = N
10 qusvscpbl.f F = x B x M ~ QG G
11 qusvscpbl.u φ U B
12 qusvscpbl.v φ V B
13 eqid M ~ QG G = M ~ QG G
14 1 13 3 4 5 6 7 eqgvscpbl φ U M ~ QG G V K · ˙ U M ~ QG G K · ˙ V
15 eqid LSubSp M = LSubSp M
16 15 lsssubg M LMod G LSubSp M G SubGrp M
17 5 6 16 syl2anc φ G SubGrp M
18 1 13 eqger G SubGrp M M ~ QG G Er B
19 17 18 syl φ M ~ QG G Er B
20 19 11 erth φ U M ~ QG G V U M ~ QG G = V M ~ QG G
21 eqid Scalar M = Scalar M
22 1 21 4 3 lmodvscl M LMod K S U B K · ˙ U B
23 5 7 11 22 syl3anc φ K · ˙ U B
24 19 23 erth φ K · ˙ U M ~ QG G K · ˙ V K · ˙ U M ~ QG G = K · ˙ V M ~ QG G
25 14 20 24 3imtr3d φ U M ~ QG G = V M ~ QG G K · ˙ U M ~ QG G = K · ˙ V M ~ QG G
26 eceq1 x = U x M ~ QG G = U M ~ QG G
27 ovex M ~ QG G V
28 ecexg M ~ QG G V U M ~ QG G V
29 27 28 ax-mp U M ~ QG G V
30 26 10 29 fvmpt U B F U = U M ~ QG G
31 11 30 syl φ F U = U M ~ QG G
32 eceq1 x = V x M ~ QG G = V M ~ QG G
33 ecexg M ~ QG G V V M ~ QG G V
34 27 33 ax-mp V M ~ QG G V
35 32 10 34 fvmpt V B F V = V M ~ QG G
36 12 35 syl φ F V = V M ~ QG G
37 31 36 eqeq12d φ F U = F V U M ~ QG G = V M ~ QG G
38 eceq1 x = K · ˙ U x M ~ QG G = K · ˙ U M ~ QG G
39 ecexg M ~ QG G V K · ˙ U M ~ QG G V
40 27 39 ax-mp K · ˙ U M ~ QG G V
41 38 10 40 fvmpt K · ˙ U B F K · ˙ U = K · ˙ U M ~ QG G
42 23 41 syl φ F K · ˙ U = K · ˙ U M ~ QG G
43 1 21 4 3 lmodvscl M LMod K S V B K · ˙ V B
44 5 7 12 43 syl3anc φ K · ˙ V B
45 eceq1 x = K · ˙ V x M ~ QG G = K · ˙ V M ~ QG G
46 ecexg M ~ QG G V K · ˙ V M ~ QG G V
47 27 46 ax-mp K · ˙ V M ~ QG G V
48 45 10 47 fvmpt K · ˙ V B F K · ˙ V = K · ˙ V M ~ QG G
49 44 48 syl φ F K · ˙ V = K · ˙ V M ~ QG G
50 42 49 eqeq12d φ F K · ˙ U = F K · ˙ V K · ˙ U M ~ QG G = K · ˙ V M ~ QG G
51 25 37 50 3imtr4d φ F U = F V F K · ˙ U = F K · ˙ V