Metamath Proof Explorer


Theorem qusvscpbl

Description: The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses eqgvscpbl.v B=BaseM
eqgvscpbl.e ˙=M~QGG
eqgvscpbl.s S=BaseScalarM
eqgvscpbl.p ·˙=M
eqgvscpbl.m φMLMod
eqgvscpbl.g φGLSubSpM
eqgvscpbl.k φKS
qusvsval.n N=M/𝑠M~QGG
qusvsval.m ˙=N
qusvscpbl.f F=xBxM~QGG
qusvscpbl.u φUB
qusvscpbl.v φVB
Assertion qusvscpbl φFU=FVFK·˙U=FK·˙V

Proof

Step Hyp Ref Expression
1 eqgvscpbl.v B=BaseM
2 eqgvscpbl.e ˙=M~QGG
3 eqgvscpbl.s S=BaseScalarM
4 eqgvscpbl.p ·˙=M
5 eqgvscpbl.m φMLMod
6 eqgvscpbl.g φGLSubSpM
7 eqgvscpbl.k φKS
8 qusvsval.n N=M/𝑠M~QGG
9 qusvsval.m ˙=N
10 qusvscpbl.f F=xBxM~QGG
11 qusvscpbl.u φUB
12 qusvscpbl.v φVB
13 eqid M~QGG=M~QGG
14 1 13 3 4 5 6 7 eqgvscpbl φUM~QGGVK·˙UM~QGGK·˙V
15 eqid LSubSpM=LSubSpM
16 15 lsssubg MLModGLSubSpMGSubGrpM
17 5 6 16 syl2anc φGSubGrpM
18 1 13 eqger GSubGrpMM~QGGErB
19 17 18 syl φM~QGGErB
20 19 11 erth φUM~QGGVUM~QGG=VM~QGG
21 eqid ScalarM=ScalarM
22 1 21 4 3 lmodvscl MLModKSUBK·˙UB
23 5 7 11 22 syl3anc φK·˙UB
24 19 23 erth φK·˙UM~QGGK·˙VK·˙UM~QGG=K·˙VM~QGG
25 14 20 24 3imtr3d φUM~QGG=VM~QGGK·˙UM~QGG=K·˙VM~QGG
26 eceq1 x=UxM~QGG=UM~QGG
27 ovex M~QGGV
28 ecexg M~QGGVUM~QGGV
29 27 28 ax-mp UM~QGGV
30 26 10 29 fvmpt UBFU=UM~QGG
31 11 30 syl φFU=UM~QGG
32 eceq1 x=VxM~QGG=VM~QGG
33 ecexg M~QGGVVM~QGGV
34 27 33 ax-mp VM~QGGV
35 32 10 34 fvmpt VBFV=VM~QGG
36 12 35 syl φFV=VM~QGG
37 31 36 eqeq12d φFU=FVUM~QGG=VM~QGG
38 eceq1 x=K·˙UxM~QGG=K·˙UM~QGG
39 ecexg M~QGGVK·˙UM~QGGV
40 27 39 ax-mp K·˙UM~QGGV
41 38 10 40 fvmpt K·˙UBFK·˙U=K·˙UM~QGG
42 23 41 syl φFK·˙U=K·˙UM~QGG
43 1 21 4 3 lmodvscl MLModKSVBK·˙VB
44 5 7 12 43 syl3anc φK·˙VB
45 eceq1 x=K·˙VxM~QGG=K·˙VM~QGG
46 ecexg M~QGGVK·˙VM~QGGV
47 27 46 ax-mp K·˙VM~QGGV
48 45 10 47 fvmpt K·˙VBFK·˙V=K·˙VM~QGG
49 44 48 syl φFK·˙V=K·˙VM~QGG
50 42 49 eqeq12d φFK·˙U=FK·˙VK·˙UM~QGG=K·˙VM~QGG
51 25 37 50 3imtr4d φFU=FVFK·˙U=FK·˙V