Description: The polynomial remainder operation is periodic. See modcyc . (Contributed by Thierry Arnoux, 2-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | r1padd1.p | |
|
r1padd1.u | |
||
r1padd1.n | |
||
r1padd1.e | |
||
r1pcyc.p | |
||
r1pcyc.m | |
||
r1pcyc.r | |
||
r1pcyc.a | |
||
r1pcyc.b | |
||
r1pcyc.c | |
||
Assertion | r1pcyc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1padd1.p | |
|
2 | r1padd1.u | |
|
3 | r1padd1.n | |
|
4 | r1padd1.e | |
|
5 | r1pcyc.p | |
|
6 | r1pcyc.m | |
|
7 | r1pcyc.r | |
|
8 | r1pcyc.a | |
|
9 | r1pcyc.b | |
|
10 | r1pcyc.c | |
|
11 | 1 | ply1ring | |
12 | 7 11 | syl | |
13 | 12 | ringgrpd | |
14 | eqid | |
|
15 | 14 1 2 3 | q1pcl | |
16 | 7 8 9 15 | syl3anc | |
17 | 1 2 3 | uc1pcl | |
18 | 9 17 | syl | |
19 | 2 6 12 16 18 | ringcld | |
20 | 2 6 12 10 18 | ringcld | |
21 | eqid | |
|
22 | 2 5 21 | grppnpcan2 | |
23 | 13 8 19 20 22 | syl13anc | |
24 | 2 5 13 8 20 | grpcld | |
25 | 4 1 2 14 6 21 | r1pval | |
26 | 24 18 25 | syl2anc | |
27 | 14 1 2 3 | q1pcl | |
28 | 7 20 9 27 | syl3anc | |
29 | 2 5 6 | ringdir | |
30 | 12 16 28 18 29 | syl13anc | |
31 | 1 2 3 14 7 8 9 20 5 | q1pdir | |
32 | 31 | oveq1d | |
33 | eqid | |
|
34 | 2 33 6 | dvdsrmul | |
35 | 18 10 34 | syl2anc | |
36 | 1 33 2 3 6 14 | dvdsq1p | |
37 | 7 20 9 36 | syl3anc | |
38 | 35 37 | mpbid | |
39 | 38 | oveq2d | |
40 | 30 32 39 | 3eqtr4d | |
41 | 40 | oveq2d | |
42 | 26 41 | eqtrd | |
43 | 4 1 2 14 6 21 | r1pval | |
44 | 8 18 43 | syl2anc | |
45 | 23 42 44 | 3eqtr4d | |