Metamath Proof Explorer


Theorem r1pcyc

Description: The polynomial remainder operation is periodic. See modcyc . (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1padd1.p P=Poly1R
r1padd1.u U=BaseP
r1padd1.n N=Unic1pR
r1padd1.e E=rem1pR
r1pcyc.p +˙=+P
r1pcyc.m ·˙=P
r1pcyc.r φRRing
r1pcyc.a φAU
r1pcyc.b φBN
r1pcyc.c φCU
Assertion r1pcyc φA+˙C·˙BEB=AEB

Proof

Step Hyp Ref Expression
1 r1padd1.p P=Poly1R
2 r1padd1.u U=BaseP
3 r1padd1.n N=Unic1pR
4 r1padd1.e E=rem1pR
5 r1pcyc.p +˙=+P
6 r1pcyc.m ·˙=P
7 r1pcyc.r φRRing
8 r1pcyc.a φAU
9 r1pcyc.b φBN
10 r1pcyc.c φCU
11 1 ply1ring RRingPRing
12 7 11 syl φPRing
13 12 ringgrpd φPGrp
14 eqid quot1pR=quot1pR
15 14 1 2 3 q1pcl RRingAUBNAquot1pRBU
16 7 8 9 15 syl3anc φAquot1pRBU
17 1 2 3 uc1pcl BNBU
18 9 17 syl φBU
19 2 6 12 16 18 ringcld φAquot1pRB·˙BU
20 2 6 12 10 18 ringcld φC·˙BU
21 eqid -P=-P
22 2 5 21 grppnpcan2 PGrpAUAquot1pRB·˙BUC·˙BUA+˙C·˙B-PAquot1pRB·˙B+˙C·˙B=A-PAquot1pRB·˙B
23 13 8 19 20 22 syl13anc φA+˙C·˙B-PAquot1pRB·˙B+˙C·˙B=A-PAquot1pRB·˙B
24 2 5 13 8 20 grpcld φA+˙C·˙BU
25 4 1 2 14 6 21 r1pval A+˙C·˙BUBUA+˙C·˙BEB=A+˙C·˙B-PA+˙C·˙Bquot1pRB·˙B
26 24 18 25 syl2anc φA+˙C·˙BEB=A+˙C·˙B-PA+˙C·˙Bquot1pRB·˙B
27 14 1 2 3 q1pcl RRingC·˙BUBNC·˙Bquot1pRBU
28 7 20 9 27 syl3anc φC·˙Bquot1pRBU
29 2 5 6 ringdir PRingAquot1pRBUC·˙Bquot1pRBUBUAquot1pRB+˙C·˙Bquot1pRB·˙B=Aquot1pRB·˙B+˙C·˙Bquot1pRB·˙B
30 12 16 28 18 29 syl13anc φAquot1pRB+˙C·˙Bquot1pRB·˙B=Aquot1pRB·˙B+˙C·˙Bquot1pRB·˙B
31 1 2 3 14 7 8 9 20 5 q1pdir φA+˙C·˙Bquot1pRB=Aquot1pRB+˙C·˙Bquot1pRB
32 31 oveq1d φA+˙C·˙Bquot1pRB·˙B=Aquot1pRB+˙C·˙Bquot1pRB·˙B
33 eqid rP=rP
34 2 33 6 dvdsrmul BUCUBrPC·˙B
35 18 10 34 syl2anc φBrPC·˙B
36 1 33 2 3 6 14 dvdsq1p RRingC·˙BUBNBrPC·˙BC·˙B=C·˙Bquot1pRB·˙B
37 7 20 9 36 syl3anc φBrPC·˙BC·˙B=C·˙Bquot1pRB·˙B
38 35 37 mpbid φC·˙B=C·˙Bquot1pRB·˙B
39 38 oveq2d φAquot1pRB·˙B+˙C·˙B=Aquot1pRB·˙B+˙C·˙Bquot1pRB·˙B
40 30 32 39 3eqtr4d φA+˙C·˙Bquot1pRB·˙B=Aquot1pRB·˙B+˙C·˙B
41 40 oveq2d φA+˙C·˙B-PA+˙C·˙Bquot1pRB·˙B=A+˙C·˙B-PAquot1pRB·˙B+˙C·˙B
42 26 41 eqtrd φA+˙C·˙BEB=A+˙C·˙B-PAquot1pRB·˙B+˙C·˙B
43 4 1 2 14 6 21 r1pval AUBUAEB=A-PAquot1pRB·˙B
44 8 18 43 syl2anc φAEB=A-PAquot1pRB·˙B
45 23 42 44 3eqtr4d φA+˙C·˙BEB=AEB