| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1padd1.p |
|
| 2 |
|
r1padd1.u |
|
| 3 |
|
r1padd1.n |
|
| 4 |
|
q1pdir.d |
|
| 5 |
|
q1pdir.r |
|
| 6 |
|
q1pdir.a |
|
| 7 |
|
q1pdir.c |
|
| 8 |
|
q1pdir.b |
|
| 9 |
|
q1pdir.1 |
|
| 10 |
1
|
ply1ring |
|
| 11 |
5 10
|
syl |
|
| 12 |
11
|
ringgrpd |
|
| 13 |
2 9 12 6 8
|
grpcld |
|
| 14 |
4 1 2 3
|
q1pcl |
|
| 15 |
5 6 7 14
|
syl3anc |
|
| 16 |
4 1 2 3
|
q1pcl |
|
| 17 |
5 8 7 16
|
syl3anc |
|
| 18 |
2 9 12 15 17
|
grpcld |
|
| 19 |
1 2 3
|
uc1pcl |
|
| 20 |
7 19
|
syl |
|
| 21 |
|
eqid |
|
| 22 |
2 9 21
|
ringdir |
|
| 23 |
11 15 17 20 22
|
syl13anc |
|
| 24 |
23
|
oveq2d |
|
| 25 |
11
|
ringabld |
|
| 26 |
2 21 11 15 20
|
ringcld |
|
| 27 |
2 21 11 17 20
|
ringcld |
|
| 28 |
|
eqid |
|
| 29 |
2 9 28
|
ablsub4 |
|
| 30 |
25 6 8 26 27 29
|
syl122anc |
|
| 31 |
24 30
|
eqtrd |
|
| 32 |
31
|
fveq2d |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
34 1 2 4 21 28
|
r1pval |
|
| 36 |
6 20 35
|
syl2anc |
|
| 37 |
34 1 2 3
|
r1pcl |
|
| 38 |
5 6 7 37
|
syl3anc |
|
| 39 |
36 38
|
eqeltrrd |
|
| 40 |
34 1 2 4 21 28
|
r1pval |
|
| 41 |
8 20 40
|
syl2anc |
|
| 42 |
34 1 2 3
|
r1pcl |
|
| 43 |
5 8 7 42
|
syl3anc |
|
| 44 |
41 43
|
eqeltrrd |
|
| 45 |
33 1 2
|
deg1xrcl |
|
| 46 |
20 45
|
syl |
|
| 47 |
36
|
fveq2d |
|
| 48 |
34 1 2 3 33
|
r1pdeglt |
|
| 49 |
5 6 7 48
|
syl3anc |
|
| 50 |
47 49
|
eqbrtrrd |
|
| 51 |
41
|
fveq2d |
|
| 52 |
34 1 2 3 33
|
r1pdeglt |
|
| 53 |
5 8 7 52
|
syl3anc |
|
| 54 |
51 53
|
eqbrtrrd |
|
| 55 |
1 33 5 2 9 39 44 46 50 54
|
deg1addlt |
|
| 56 |
32 55
|
eqbrtrd |
|
| 57 |
4 1 2 33 28 21 3
|
q1peqb |
|
| 58 |
57
|
biimpa |
|
| 59 |
5 13 7 18 56 58
|
syl32anc |
|