Metamath Proof Explorer


Theorem ralrnmptw

Description: A restricted quantifier over an image set. Version of ralrnmpt with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 20-Aug-2015) Avoid ax-13 . (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses ralrnmptw.1 F=xAB
ralrnmptw.2 y=Bψχ
Assertion ralrnmptw xABVyranFψxAχ

Proof

Step Hyp Ref Expression
1 ralrnmptw.1 F=xAB
2 ralrnmptw.2 y=Bψχ
3 1 fnmpt xABVFFnA
4 dfsbcq w=Fz[˙w/y]˙ψ[˙Fz/y]˙ψ
5 4 ralrn FFnAwranF[˙w/y]˙ψzA[˙Fz/y]˙ψ
6 3 5 syl xABVwranF[˙w/y]˙ψzA[˙Fz/y]˙ψ
7 nfsbc1v y[˙w/y]˙ψ
8 nfv wψ
9 sbceq2a w=y[˙w/y]˙ψψ
10 7 8 9 cbvralw wranF[˙w/y]˙ψyranFψ
11 nfmpt1 _xxAB
12 1 11 nfcxfr _xF
13 nfcv _xz
14 12 13 nffv _xFz
15 nfv xψ
16 14 15 nfsbcw x[˙Fz/y]˙ψ
17 nfv z[˙Fx/y]˙ψ
18 fveq2 z=xFz=Fx
19 18 sbceq1d z=x[˙Fz/y]˙ψ[˙Fx/y]˙ψ
20 16 17 19 cbvralw zA[˙Fz/y]˙ψxA[˙Fx/y]˙ψ
21 6 10 20 3bitr3g xABVyranFψxA[˙Fx/y]˙ψ
22 1 fvmpt2 xABVFx=B
23 22 sbceq1d xABV[˙Fx/y]˙ψ[˙B/y]˙ψ
24 2 sbcieg BV[˙B/y]˙ψχ
25 24 adantl xABV[˙B/y]˙ψχ
26 23 25 bitrd xABV[˙Fx/y]˙ψχ
27 26 ralimiaa xABVxA[˙Fx/y]˙ψχ
28 ralbi xA[˙Fx/y]˙ψχxA[˙Fx/y]˙ψxAχ
29 27 28 syl xABVxA[˙Fx/y]˙ψxAχ
30 21 29 bitrd xABVyranFψxAχ