Metamath Proof Explorer


Theorem rankwflemb

Description: Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion rankwflemb AR1OnxOnAR1sucx

Proof

Step Hyp Ref Expression
1 eluni AR1OnyAyyR1On
2 eleq2 R1x=yAR1xAy
3 2 biimprcd AyR1x=yAR1x
4 r1tr TrR1x
5 trss TrR1xAR1xAR1x
6 4 5 ax-mp AR1xAR1x
7 elpwg AR1xA𝒫R1xAR1x
8 6 7 mpbird AR1xA𝒫R1x
9 elfvdm AR1xxdomR1
10 r1sucg xdomR1R1sucx=𝒫R1x
11 9 10 syl AR1xR1sucx=𝒫R1x
12 8 11 eleqtrrd AR1xAR1sucx
13 12 a1i xOnAR1xAR1sucx
14 3 13 syl9 AyxOnR1x=yAR1sucx
15 14 reximdvai AyxOnR1x=yxOnAR1sucx
16 r1funlim FunR1LimdomR1
17 16 simpli FunR1
18 fvelima FunR1yR1OnxOnR1x=y
19 17 18 mpan yR1OnxOnR1x=y
20 15 19 impel AyyR1OnxOnAR1sucx
21 20 exlimiv yAyyR1OnxOnAR1sucx
22 1 21 sylbi AR1OnxOnAR1sucx
23 elfvdm AR1sucxsucxdomR1
24 fvelrn FunR1sucxdomR1R1sucxranR1
25 17 23 24 sylancr AR1sucxR1sucxranR1
26 df-ima R1On=ranR1On
27 funrel FunR1RelR1
28 17 27 ax-mp RelR1
29 16 simpri LimdomR1
30 limord LimdomR1OrddomR1
31 ordsson OrddomR1domR1On
32 29 30 31 mp2b domR1On
33 relssres RelR1domR1OnR1On=R1
34 28 32 33 mp2an R1On=R1
35 34 rneqi ranR1On=ranR1
36 26 35 eqtri R1On=ranR1
37 25 36 eleqtrrdi AR1sucxR1sucxR1On
38 elunii AR1sucxR1sucxR1OnAR1On
39 37 38 mpdan AR1sucxAR1On
40 39 rexlimivw xOnAR1sucxAR1On
41 22 40 impbii AR1OnxOnAR1sucx