Metamath Proof Explorer


Theorem rankxpsuc

Description: The rank of a Cartesian product when the rank of the union of its arguments is a successor ordinal. Part of Exercise 4 of Kunen p. 107. See rankxplim for the limit ordinal case. (Contributed by NM, 19-Sep-2006)

Ref Expression
Hypotheses rankxplim.1 AV
rankxplim.2 BV
Assertion rankxpsuc rankAB=sucCA×BrankA×B=sucsucrankAB

Proof

Step Hyp Ref Expression
1 rankxplim.1 AV
2 rankxplim.2 BV
3 unixp A×BA×B=AB
4 3 fveq2d A×BrankA×B=rankAB
5 rankuni rankA×B=rankA×B
6 rankuni rankA×B=rankA×B
7 6 unieqi rankA×B=rankA×B
8 5 7 eqtri rankA×B=rankA×B
9 4 8 eqtr3di A×BrankAB=rankA×B
10 suc11reg sucrankAB=sucrankA×BrankAB=rankA×B
11 9 10 sylibr A×BsucrankAB=sucrankA×B
12 11 adantl rankAB=sucCA×BsucrankAB=sucrankA×B
13 fvex rankABV
14 eleq1 rankAB=sucCrankABVsucCV
15 13 14 mpbii rankAB=sucCsucCV
16 sucexb CVsucCV
17 15 16 sylibr rankAB=sucCCV
18 nlimsucg CV¬LimsucC
19 17 18 syl rankAB=sucC¬LimsucC
20 limeq rankAB=sucCLimrankABLimsucC
21 19 20 mtbird rankAB=sucC¬LimrankAB
22 1 2 rankxplim2 LimrankA×BLimrankAB
23 21 22 nsyl rankAB=sucC¬LimrankA×B
24 1 2 xpex A×BV
25 24 rankeq0 A×B=rankA×B=
26 25 necon3abii A×B¬rankA×B=
27 rankon rankA×BOn
28 27 onordi OrdrankA×B
29 ordzsl OrdrankA×BrankA×B=xOnrankA×B=sucxLimrankA×B
30 28 29 mpbi rankA×B=xOnrankA×B=sucxLimrankA×B
31 3orass rankA×B=xOnrankA×B=sucxLimrankA×BrankA×B=xOnrankA×B=sucxLimrankA×B
32 30 31 mpbi rankA×B=xOnrankA×B=sucxLimrankA×B
33 32 ori ¬rankA×B=xOnrankA×B=sucxLimrankA×B
34 26 33 sylbi A×BxOnrankA×B=sucxLimrankA×B
35 34 ord A×B¬xOnrankA×B=sucxLimrankA×B
36 35 con1d A×B¬LimrankA×BxOnrankA×B=sucx
37 23 36 syl5com rankAB=sucCA×BxOnrankA×B=sucx
38 nlimsucg xV¬Limsucx
39 38 elv ¬Limsucx
40 limeq rankA×B=sucxLimrankA×BLimsucx
41 39 40 mtbiri rankA×B=sucx¬LimrankA×B
42 41 rexlimivw xOnrankA×B=sucx¬LimrankA×B
43 1 2 rankxplim3 LimrankA×BLimrankA×B
44 42 43 sylnib xOnrankA×B=sucx¬LimrankA×B
45 37 44 syl6com A×BrankAB=sucC¬LimrankA×B
46 unixp0 A×B=A×B=
47 24 uniex A×BV
48 47 rankeq0 A×B=rankA×B=
49 6 eqeq1i rankA×B=rankA×B=
50 46 48 49 3bitri A×B=rankA×B=
51 50 necon3abii A×B¬rankA×B=
52 onuni rankA×BOnrankA×BOn
53 27 52 ax-mp rankA×BOn
54 53 onordi OrdrankA×B
55 ordzsl OrdrankA×BrankA×B=xOnrankA×B=sucxLimrankA×B
56 54 55 mpbi rankA×B=xOnrankA×B=sucxLimrankA×B
57 3orass rankA×B=xOnrankA×B=sucxLimrankA×BrankA×B=xOnrankA×B=sucxLimrankA×B
58 56 57 mpbi rankA×B=xOnrankA×B=sucxLimrankA×B
59 58 ori ¬rankA×B=xOnrankA×B=sucxLimrankA×B
60 51 59 sylbi A×BxOnrankA×B=sucxLimrankA×B
61 60 ord A×B¬xOnrankA×B=sucxLimrankA×B
62 61 con1d A×B¬LimrankA×BxOnrankA×B=sucx
63 45 62 syld A×BrankAB=sucCxOnrankA×B=sucx
64 63 impcom rankAB=sucCA×BxOnrankA×B=sucx
65 onsucuni2 rankA×BOnrankA×B=sucxsucrankA×B=rankA×B
66 53 65 mpan rankA×B=sucxsucrankA×B=rankA×B
67 66 rexlimivw xOnrankA×B=sucxsucrankA×B=rankA×B
68 64 67 syl rankAB=sucCA×BsucrankA×B=rankA×B
69 12 68 eqtrd rankAB=sucCA×BsucrankAB=rankA×B
70 suc11reg sucsucrankAB=sucrankA×BsucrankAB=rankA×B
71 69 70 sylibr rankAB=sucCA×BsucsucrankAB=sucrankA×B
72 37 imp rankAB=sucCA×BxOnrankA×B=sucx
73 onsucuni2 rankA×BOnrankA×B=sucxsucrankA×B=rankA×B
74 27 73 mpan rankA×B=sucxsucrankA×B=rankA×B
75 74 rexlimivw xOnrankA×B=sucxsucrankA×B=rankA×B
76 72 75 syl rankAB=sucCA×BsucrankA×B=rankA×B
77 71 76 eqtr2d rankAB=sucCA×BrankA×B=sucsucrankAB