Metamath Proof Explorer


Theorem reasinsin

Description: The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion reasinsin Aπ2π2arcsinsinA=A

Proof

Step Hyp Ref Expression
1 neghalfpire π2
2 1 rexri π2*
3 halfpire π2
4 3 rexri π2*
5 pirp π+
6 rphalfcl π+π2+
7 5 6 ax-mp π2+
8 rpgt0 π2+0<π2
9 7 8 ax-mp 0<π2
10 lt0neg2 π20<π2π2<0
11 3 10 ax-mp 0<π2π2<0
12 9 11 mpbi π2<0
13 0re 0
14 1 13 3 lttri π2<00<π2π2<π2
15 12 9 14 mp2an π2<π2
16 1 3 15 ltleii π2π2
17 prunioo π2*π2*π2π2π2π2π2π2=π2π2
18 2 4 16 17 mp3an π2π2π2π2=π2π2
19 18 eleq2i Aπ2π2π2π2Aπ2π2
20 elun Aπ2π2π2π2Aπ2π2Aπ2π2
21 19 20 bitr3i Aπ2π2Aπ2π2Aπ2π2
22 elioore Aπ2π2A
23 22 recnd Aπ2π2A
24 22 rered Aπ2π2A=A
25 id Aπ2π2Aπ2π2
26 24 25 eqeltrd Aπ2π2Aπ2π2
27 asinsin AAπ2π2arcsinsinA=A
28 23 26 27 syl2anc Aπ2π2arcsinsinA=A
29 elpri Aπ2π2A=π2A=π2
30 ax-1cn 1
31 asinneg 1arcsin1=arcsin1
32 30 31 ax-mp arcsin1=arcsin1
33 asin1 arcsin1=π2
34 33 negeqi arcsin1=π2
35 32 34 eqtri arcsin1=π2
36 fveq2 A=π2sinA=sinπ2
37 3 recni π2
38 sinneg π2sinπ2=sinπ2
39 37 38 ax-mp sinπ2=sinπ2
40 sinhalfpi sinπ2=1
41 40 negeqi sinπ2=1
42 39 41 eqtri sinπ2=1
43 36 42 eqtrdi A=π2sinA=1
44 43 fveq2d A=π2arcsinsinA=arcsin1
45 id A=π2A=π2
46 35 44 45 3eqtr4a A=π2arcsinsinA=A
47 fveq2 A=π2sinA=sinπ2
48 47 40 eqtrdi A=π2sinA=1
49 48 fveq2d A=π2arcsinsinA=arcsin1
50 id A=π2A=π2
51 33 49 50 3eqtr4a A=π2arcsinsinA=A
52 46 51 jaoi A=π2A=π2arcsinsinA=A
53 29 52 syl Aπ2π2arcsinsinA=A
54 28 53 jaoi Aπ2π2Aπ2π2arcsinsinA=A
55 21 54 sylbi Aπ2π2arcsinsinA=A